The NCAA salutes the more than 380,000 student-athletes participating in 23 sports at more than 1,000 member institutions.
THE NATIONAL COLLEGIATE ATHLETIC ASSOCIATION
P.O. Box 6222
Indianapolis, Indiana 46206-6222
317/917-6222
NCAA.org

Eighteenth Edition
July 2007

Compiled By: David Klossner, Associate Director of Education Services.

Distributed to directors of athletics, senior woman administrators, faculty athletics representatives, head athletic trainers, team physicians, CHAMPS/Life Skills coordinators, individual student-athlete advisory committees and conference commissioners.

Note: Revisions to the guidelines contained in the NCAA Sports Medicine Handbook may be made on a yearly basis. Between printings of the handbook, revisions will be published in The NCAA News. It is important that persons using this handbook be aware of any such revisions. The NCAA Committee on Competitive Safeguards and Medical Aspects of Sports suggests that such revisions be recorded in the handbook, thereby keeping this publication current. New guidelines and major revisions have been highlighted with orange shading.

NCAA, NCAA logo and NATIONAL COLLEGIATE ATHLETIC ASSOCIATION are registered marks of the Association and use in any manner is prohibited unless prior approval is obtained from the Association.

Member institutions and conferences may reproduce information in this publication for their own use, provided the NCAA copyright is included on the material.

Also found on the NCAA Web site at the following address:
NCAA.org/health-safety.

The health and safety principle of the National Collegiate Athletic Association’s constitution provides that it is the responsibility of each member institution to protect the health of, and provide a safe environment for, each of its participating student-athletes. To provide guidance in accomplishing this objective and to assist member schools in developing a safe intercollegiate athletics program, the NCAA Committee on Competitive Safeguards and Medical Aspects of Sports creates a Sports Medicine Handbook. The committee has agreed to formulate guidelines for sports medicine care and protection of student-athletes’ health and safety for topics relevant to intercollegiate athletics, applicable to a large population of student-athletes, and not accessible in another easily obtainable source.

This handbook consists of guidelines for each institution to consider in developing sports medicine policies appropriate for its intercollegiate athletics program. In some instances, accompanying references to sports medicine or legal resource materials are provided for further guidance. These recommendations are not intended to establish a legal standard of care that must be strictly adhered to by member institutions. In other words, these guidelines are not mandates that an institution is required to follow to avoid legal liability or disciplinary sanctions by the NCAA. However, an institution has a legal duty to use reasonable care in conducting its intercollegiate athletics program, and guidelines may constitute some evidence of the legal standard of care.

These general guidelines are not intended to supersede the exercise of medical judgment in specific situations by a member institution’s sports medicine staff. In all instances, determination of the appropriate care and treatment of student-athletes must be based on the clinical judgment of the institution’s team physician or athletic health care team that is consistent with sound principles of sports medicine care. These recommendations provide guidance for an institution’s athletics administrators and sports medicine staff in protecting student-athletes’ health and safety, but do not establish any rigid requirements that must be followed in all cases.

This handbook is produced annually and sent to directors of athletics, senior woman administrators, faculty athletics representatives, athletic trainers, team physicians, CHAMPS/Life Skills coordinators, student-athlete advisory committees and conference commissioners at each member institution in the fall. Please view the NCAA Sports Medicine Handbook as a tool to help your institution develop its sports medicine administrative policies. Such policies should reflect a commitment to protecting your student-athletes’ health and well-being as well as an awareness of the guidelines set forth in this handbook.
2007-08
Sports Medicine Guidelines

Foreword ... 4

1. Administrative Issues
 a. Sports Medicine Administration ... 6
 b. Medical Evaluations, Immunizations and Records .. 8
 c. Emergency Care and Coverage ... 10
 d. Lightning Safety ... 12
 e. Catastrophic Incident in Athletics ... 15
 f. Dispensing Prescription Medication ... 17
 g. Nontherapeutic Drugs ... 19
 h. Institutional Alcohol, Tobacco and Other Drug Education Programs ... 20

2. Medical Issues
 a. Medical Disqualification of the Student-Athlete .. 24
 b. Cold Stress ... 25
 c. Prevention of Heat Illness .. 28
 d. Weight Loss—Dehydration ... 31
 e. Assessment of Body Composition .. 32
 f. Nutrition and Athletic Performance .. 37
 g. Dietary Supplements and Banned Substances .. 40
 h. “Burners” (Brachial Plexus Injuries) .. 43
 i. Concussion or Mild Traumatic Brain Injury .. 46
 j. Skin Infections in Wrestling .. 50
 k. Menstrual-Cycle Dysfunction ... 52
 l. Blood-Borne Pathogens and Intercollegiate Athletics .. 54
 m. The Use of Local Anesthetics in College Athletics ... 61
 n. The Use of Injectable Corticosteroids in Sports Injuries .. 62
 o. Depression: Interventions for Intercollegiate Athletics .. 64

3. Special Populations
 a. Participation by the Student-Athlete with Impairment .. 70
 b. Participation by the Pregnant Student-Athlete ... 72
 c. The Student-Athlete with Sickle Cell Trait .. 74

4. Equipment
 a. Protective Equipment ... 78
 b. Eye Safety in Sports ... 84
 c. Mouth Guards .. 86
 d. Use of the Head as a Weapon in Football and Other Contact Sports ... 88
 e. Guidelines for Helmet Fitting and Removal in Athletics ... 89
 f. Use of Trampoline and Minitramp ... 92

Appendices
 a. NCAA Legislation Involving Health and Safety ... 96
 b. NCAA Injury Surveillance System Summary ... 101
 c. Acknowledgements ... 111
 d. Banned Drug Classes .. 113

New or significantly revised guidelines are highlighted on this page. Smaller revisions are highlighted within the specific guideline.
Participation in intercollegiate athletics involves unavoidable exposure to an inherent risk of injury. However, student-athletes rightfully assume that those who sponsor intercollegiate athletics have taken reasonable precautions to minimize the risks of injury from athletics participation. In an effort to do so, the NCAA collects injury data in intercollegiate sports. When appropriate, the NCAA Committee on Competitive Safeguards and Medical Aspects of Sports makes recommendations to modify safety guidelines, equipment standards, or a sport’s rules of play.

It is important to recognize that rule books, safety guidelines and equipment standards, while helpful means of promoting safe athletics participation, are themselves insufficient to accomplish this goal. To effectively minimize the risks of injury from athletics participation, everyone involved in intercollegiate athletics must understand and respect the intent and objectives of applicable rules, guidelines and standards.

The institution, through its athletics director, is responsible for establishing a safe environment for its student-athletes to participate in its intercollegiate athletics program.

Coaches should appropriately warn student-athletes about the sport’s inherent risks of injury and instruct them how to minimize such risks while participating in games, practices and training.

The team physician and athletic health care team should assume responsibility for developing an appropriate injury prevention program and providing quality sports medicine care to injured student-athletes.

Student-athletes should fully understand and comply with the rules and standard of play that govern their sports and follow established procedures to minimize their risk of injury.

In summary, all persons participating in, or associated with, an institution’s intercollegiate athletics program share responsibility for taking steps to reduce effectively the risk of injury during intercollegiate athletic competition.
The following components of a safe athletics program are an important part of injury prevention. They should serve both as a checklist and as a guideline for use by athletics administrators in the development of safe programs.

1. **Preparticipation Medical Exam.** Before student-athletes accept the rigors of any organized sport, their health should be evaluated by qualified medical personnel. Such an examination should determine whether the student-athlete is medically cleared to engage in a particular sport (see NCAA Bylaw 17.1.5).

2. **Health Insurance.** Each student-athlete should be covered by individual, parental or institutional medical insurance to defray the costs of significant injury or illness.

3. **Preseason Preparation.** The student-athlete should be protected from premature exposure to the full rigors of sports. Preseason conditioning should provide the student-athlete with optimal readiness by the first practice.

4. **Acceptance of Risk.** Any informed consent or waiver by student-athletes (or, if minors, by their parents) should be based on an awareness of the risks of participating in intercollegiate sports.

5. **Planning/Supervision.** Safety in intercollegiate athletics can be attained only by appropriate planning for and supervision of practice, competition and travel.

6. **Minimizing Potential Legal Liability.** Liability must be a concern of responsible athletics administrators and coaches. Those who sponsor and govern athletics programs should accept the responsibility of minimizing the risk of injury.

7. **Equitable Medical Care.** Member institutions should neither practice nor condone illegal discrimination on the basis of race, creed, national origin, sex, age, disability, social status, financial status, sexual orientation or religious affiliation within their sports medicine programs.

Availability and accessibility to medical resources should be based on established medical criteria (e.g., injury rates, rehabilitation) rather than the sport itself.

Member institutions should not place their sports medicine staffs in compromising situations by having them provide inequitable treatment in violation of their medical codes of ethics.

Institutions should be encouraged to incorporate questions regarding adequacy of medical care, with special emphasis on equitable treatment, in exit interviews with student-athletes.

8. **Equipment.** Purchasers of equipment should be aware of and use safety standards. In addition, attention should be directed to maintaining proper repair and fitting of equipment at all times in all sports. Student-athletes should:

 a. Be informed what equipment is mandatory and what constitutes illegal equipment;

 b. Be provided the mandated equipment;
c. Be instructed to wear and how to wear mandatory equipment during participation; and

d. Be instructed to notify the coaching staff when equipment becomes unsafe or illegal.

9. Facilities. The adequacy and conditions of the facilities used for particular intercollegiate athletics events should not be overlooked, and periodic examination of the facilities should be conducted. Inspection of the facilities should include not only the competitive area, but also warm-up and adjacent areas.

10. Blood-Borne Pathogens. In 1992, the Occupational Safety and Health Administration (OSHA) developed a standard directed to minimizing or eliminating occupational exposure to blood-borne pathogens. Each member institution should determine the applicability of the OSHA standard to its personnel and facilities.

11. Emergency Care. See Guideline 1c.
Preparticipation medical evaluation. A preparticipation medical evaluation should be required upon a student-athlete's entrance into the institution's intercollegiate athletics program. This initial evaluation should include a comprehensive health history, immunization history as defined by current Centers for Disease Control and Prevention (CDC) guidelines and a relevant physical exam, with strong emphasis on the cardiovascular, neurologic and musculoskeletal evaluation. After the initial medical evaluation, an updated history should be performed annually. Further preparticipation physical examinations are not believed to be necessary unless warranted by the updated history or the student-athlete's medical condition.

The American Heart Association has modified its 1996 recommendation for a cardiovascular screening every two years for collegiate athletes. The revision recommends cardiovascular screening as a part of the physical exam required upon a student-athlete's entrance into the intercollegiate athletics program. In subsequent years, an interim history and blood pressure measurement should be made. Important changes in medical status or abnormalities may require more formal cardiovascular evaluation.

Medical records. Student-athletes have a responsibility to truthfully and fully disclose their medical history and to report any changes in their health to the team's health-care provider. Medical records should be maintained during the student-athlete's collegiate career and should include:

1. A record of injuries, illnesses, new medications or allergies, pregnancies and operations, whether sustained during the competitive season or the off-season;
2. Referrals for and feedback from consultation, treatment or rehabilitation;
3. Subsequent care and clearances;
4. A comprehensive entry-year health-status questionnaire and an updated health-status questionnaire each year thereafter. Components of the questionnaire should consider recommendations from the American Heart Association (see reference Nos. 2 and 3) and the 3rd Edition Preparticipation Physical Evaluation (see reference No. 6);
5. Immunizations. It is recommended that student-athletes be immunized for the following:
 a. Measles, mumps, rubella (MMR);
 b. Hepatitis B;
 c. Diptheria, tetanus (and boosters when appropriate); and
 d. Meningitis.
6. Written permission, signed by the student-athlete, that authorizes the release of medical information to others should be signed annually. Such permission should specify all persons to whom the student-athlete authorizes the information to be released. The consent form also should specify which information may be released and to whom.

Note: Records maintained in the athletic training facility are medical records, and therefore subject to state and federal laws with regard to confidentiality and content. Each institution should obtain from appropriate legal counsel an opinion regarding the confidentiality and content of such records in its state.

Medical records and the information they contain should be created, maintained and released in
accordance with clear written guidelines based on this opinion. All personnel who have access to a student-athlete’s medical records should be familiar with such guidelines and informed of their role in maintaining the student-athlete’s right to privacy.

Institutions should consider state statutes for medical records retention (e.g., 7 years; 10 years); institutional policy (e.g., insurance long term retention policy); and professional liability statute of limitations.

Follow-up examinations. Those who have sustained a significant injury or illness during the sport season should be given a follow-up examination to re-establish medical clearance before resuming participation in a particular sport. This policy also should apply to pregnant student-athletes after delivery or pregnancy termination. These examinations are especially relevant if the event occurred before the student-athlete left the institution for summer break. Clearance for individuals to return to activity is solely the responsibility of the team physician or that physician’s designated representative.

References

Reasonable attention to all possible preventive measures will not eliminate sports injuries. Each scheduled practice or contest of an institution-sponsored intercollegiate athletics event, and all out-of-season practices and skills sessions, should include an emergency plan. Like student-athlete well-being in general, a plan is a shared responsibility of the athletics department; administrators, coaches and medical personnel should all play a role in the establishment of the plan, procurement of resources and understanding of appropriate emergency response procedures by all parties. Components of such a plan should include:

1. The presence of a person qualified and delegated to render emergency care to a stricken participant;
2. The presence or planned access to a physician for prompt medical evaluation of the situation, when warranted;
3. Planned access to early defibrillation;
4. Planned access to a medical facility, including a plan for communication and transportation between the athletics site and the medical facility for prompt medical services, when warranted. Access to a working telephone or other telecommunications device, whether fixed or mobile, should be assured;
5. All necessary emergency equipment should be at the site or quickly accessible. Equipment should be in good operating condition, and personnel must be trained in advance to use it properly. Additionally, emergency information about the student-athlete should be available both at campus and while traveling for use by medical personnel;
6. An inclement weather policy that includes provisions for decision-making and evacuation plans (See Guideline 1d);
7. A thorough understanding by all parties, including the leadership of visiting teams, of the personnel and procedures associated with the emergency-care plan; and
8. Certification in cardiopulmonary resuscitation techniques (CPR), first aid, and prevention of disease transmission (as outlined by OSHA guidelines) should be required for all athletics personnel associated with practices, competitions, skills instruction, and strength and conditioning. New staff engaged in these activities should comply with these rules within six months of employment.
9. A member of the institution’s sports medicine staff should be empowered to have the unchallengeable authority to cancel or modify a workout for health and safety reasons (i.e., environmental changes), as he or she deems appropriate.
Guidelines To Use During a Serious On-Field Player Injury:
These guidelines have been recommended for National Football League (NFL) officials and have been shared with NCAA championships staff.

1. Players and coaches should go to and remain in the bench area once medical assistance arrives. Adequate lines of vision between the medical staffs and all available emergency personnel should be established and maintained.

2. Players, parents and nonauthorized personnel should be kept a significant distance away from the seriously injured player or players.

3. Players or non-medical personnel should not touch, move or roll an injured player.

4. Players should not try to assist a teammate who is lying on the field (i.e., removing the helmet or chin strap, or attempting to assist breathing by elevating the waist).

5. Players should not pull an injured teammate or opponent from a pile-up.

6. Once the medical staff begins to work on an injured player, they should be allowed to perform services without interruption or interference.

7. Players and coaches should avoid dictating medical services to the athletic trainers or team physicians or taking up their time to perform such services.

References

The NCAA Committee on Competitive Safeguards and Medical Aspects of Sports acknowledges the significant input of Brian L. Bennett, formerly an athletic trainer with the College of William and Mary Division of Sports Medicine, Ronald L. Holle, a meteorologist, formerly of the National Severe Storms Laboratory (NSSL), and Mary Ann Cooper, MD, Professor of Emergency Medicine of the University of Illinois at Chicago, in the development of this guideline.

Lightning is the most consistent and significant weather hazard that may affect intercollegiate athletics. Within the United States, the National Oceanographic and Atmospheric Administration (NOAA) estimates that 60 to 70 fatalities and about 10 times as many injuries occur from lightning strikes every year. While the probability of being struck by lightning is low, the odds are significantly greater when a storm is in the area and proper safety precautions are not followed.

Education and prevention are the keys to lightning safety. The references associated with this guideline are an excellent educational resource. Prevention should begin long before any intercollegiate athletics event or practice by being proactive and having a lightning safety plan in place. The following steps are recommended by the NCAA and NOAA to mitigate the lightning hazard:

1. Designate a person to monitor threatening weather and to make the decision to remove a team or individuals from an athletics site or event. A lightning safety plan should include planned instructions for participants and spectators, designation of warning and all clear signals, proper signage, and designation of safer places for shelter from the lightning.

2. Monitor local weather reports each day before any practice or event. Be diligently aware of potential thunderstorms that may form during scheduled intercollegiate athletics events or practices. Weather information can be found through various means via local television news coverage, the Internet, cable and satellite weather programming, or the National Weather Service (NWS) Web site at www.weather.gov.

3. Be informed of National Weather Service (NWS) issued thunderstorm “watches” or “warnings,” and the warning signs of developing thunderstorms in the area, such as high winds or darkening skies. A “watch” means conditions are favorable for severe weather to develop in an area; a “warning” means that severe weather has been reported in an area and for everyone to take the proper precautions. A NOAA weather radio is particularly helpful in providing this information.

4. Know where the closest “safer structure or location” is to the field or playing area, and know how long it takes to get to that location. A safer structure or location is defined as:

 a. Any building normally occupied or frequently used by people, i.e., a building with plumbing and/or electrical wiring that acts to electrically ground the structure. Avoid using the shower or plumbing facilities and contact with electrical appliances during a thunderstorm.

 b. In the absence of a sturdy, frequently inhabited building, any vehicle with a hard metal roof (neither a convertible, nor a golf cart) with the windows shut provides a measure of safety. The hard metal frame and roof, not the rubber tires, are what protects occupants by dissipating lightning current around the vehicle and not through the occupants. It is important not to touch the metal framework of the vehicle. Some athletics events rent school buses as safer shelters to place around open courses or fields.
Dangers Locations
Small covered shelters are not safe from lightning. Dugouts, rain shelters, golf shelters and picnic shelters, even if they are properly grounded for structural safety, are usually not properly grounded from the effects of lightning and side flashes to people. They are usually very unsafe and may actually increase the risk of lightning injury. Other dangerous locations include areas connected to, or near, light poles, towers and fences that can carry a nearby strike to people. Also dangerous is any location that makes the person the highest point in the area.

5. Lightning awareness should be heightened at the first flash of lightning, clap of thunder, and/or other criteria such as increasing winds or darkening skies, no matter how far away. These types of activities should be treated as a warning or “wake-up call” to intercollegiate athletics personnel. Lightning safety experts suggest that if you hear thunder, begin preparation for evacuation; if you see lightning, consider suspending activities and heading for your designated safer locations.

Specific lightning safety guidelines have been developed with the assistance of lightning safety experts. Design your lightning safety plan to consider local weather patterns and safety needs.

a. As a minimum, lightning safety experts strongly recommend that by the time the monitoring observes 30 seconds between seeing the lightning flash and hearing its associated thunder, all individuals should have left the athletics site and reached a safer structure or location.

b. Please note that thunder may be hard to hear if there is an athletics event going on, particularly in stadia with large crowds. Implement your lightning safety plan accordingly.

c. The existence of blue sky and the absence of rain are not guarantees that lightning will not strike. At least 10 percent of lightning occurs when there is no rainfall and when blue sky is often visible somewhere in the sky, especially with summer thunderstorms. Lightning can, and does, strike as far as 10 (or more) miles away from the rain shaft.

d. Avoid using landline telephones, except in emergency situations. People have been killed while using a landline telephone during a thunderstorm. Cellular or cordless phones are safe alternatives to a landline phone, particularly if the person and the antenna are located within a safer structure or location, and if all other precautions are followed.

e. To resume athletics activities, lightning safety experts recommend waiting 30 minutes after both the last sound of thunder and last flash of lightning. If lightning is seen without hearing thunder, lightning may be out of range and therefore less likely to be a significant threat. At night, be aware that lightning can be visible at a much greater distance than during the day as clouds are being lit from the inside by lightning. This greater distance may mean that the lightning is no longer a significant threat. At night, use both the sound of thunder and seeing the lightning channel itself to decide on re-setting the 30-minute “return-to-play” clock before resuming outdoor athletics activities.

f. People who have been struck by lightning do not carry an electrical charge. Therefore, cardiopulmonary resuscitation (CPR) is safe for the responder. If possible, an injured person should be moved to a safer location before starting CPR. Lightning-strike victims who show signs of cardiac or respiratory arrest need prompt emergency help. If you are in a
911 community, call for help. Prompt, aggressive CPR has been highly effective for the survival of victims of lightning strikes.

Automatic external defibrillators (AEDs) have become a common, safe and effective means of reviving persons in cardiac arrest. Planned access to early defibrillation should be part of your emergency plan. However, CPR should never be delayed while searching for an AED.

References

Note: Weather watchers, real-time weather forecasts and commercial weather-warning devices are all tools that can be used to aid in decision-making regarding stoppage of play, evacuation and return to play.
GUIDELINE 1e
Catastrophic Incident in Athletics
July 2004

The NCAA Committee on Competitive Safeguards and Medical Aspects of Sports acknowledges the significant input of Timothy Neal, ATC, Syracuse University, who originally authored this guideline.

Catastrophes such as death or permanent disability occurring in intercollegiate athletics are rare. However, the aftermath of a catastrophic incident to a student-athlete, coach or staff member can be a time of uncertainty and confusion for an institution. It is recommended that NCAA member institutions develop their own Catastrophic Incident Guideline to provide information and the support necessary to family members, teammates, coaches and staff following a catastrophe. Centralizing and disseminating the information is best served by developing a Catastrophic Incident Guideline. The guideline should be distributed to administrative, sports medicine and coaching staffs within the athletics department. The guideline should be updated and reviewed annually with the entire staff to ensure information is accurate and that new staff members are aware of the guideline.

Components of a catastrophic incident guideline should include:

1. Definition of a catastrophic incident: The sudden death of a student-athlete, coach or staff member from any cause, or disabling and/or quality of life altering injuries.

2. A management team: A select group of administrators that receive all facts pertaining to the catastrophe. This team works collaboratively to officially communicate information to family members, teammates, coaches, staff, the institution and media. This team may consist of one or more of the following: Director of Athletics, Head Athletic Trainer, University spokesperson, Director of Athletic Communications and University Risk Manager. This team may select others to help facilitate fact finding specific to the incident.

3. Immediate action plan: At the moment of the catastrophe, a checklist of whom to call and immediate steps to secure facts and offering support are items to be included.

4. Chain of command/role delineation: This area outlines each individual's responsibility during the aftermath of the catastrophe. Athletics administrators, university administrators and support services personnel should be involved in this area.

5. Criminal circumstances: Outline the collaboration of the athletic department with university, local and state law enforcement officials in the event of accidental death, homicide or suicide.

6. Away contest responsibilities: Catastrophes may occur at away contests. Indicate who should stay behind with the individual to coordinate communication and act as a university representative until relieved by the institution.

7. Phone list and flow chart: Phone numbers of all key individuals (office, home, cell) involved in the management of the catastrophe should be listed and kept current. Include university legal counsel numbers and the NCAA Catastrophic Injury Service Line Number (800/245-2744). A flow chart of whom is to be called in the event of a catastrophe is also useful in coordinating communication.

8. Incident Record: A written chronology by the management team of the catastrophic incident is recommended to critique the process and provide a basis for review and enhancement of procedures.

Sample guidelines may be found at NCAA.org/health-safety.

GUIDELINE 1f
Dispensing Prescription Medication
May 1986 • Revised June 2000

Research sponsored by the NCAA has shown that prescription medications have been provided to student-athletes by individuals other than persons legally authorized to dispense such medications. This is an important concern because the improper dispensing of both prescription and nonprescription drugs can lead to serious medical and legal consequences.

Research also has shown that state and federal regulations regarding packaging, labeling, records keeping and storage of medications have been overlooked or disregarded in the dispensing of medications from the athletic training facility. Moreover, many states have strict regulations regarding packaging, labeling, records keeping and storage of prescription and nonprescription medications. Athletics departments must be concerned about the risk of harm to the student-athletes when these regulations are not followed.

Administering drugs and dispensing drugs are two separate functions. Administration generally refers to the direct application of a single dose of drug. Dispensing is defined as preparing, packaging and labeling a prescription drug or device for subsequent use by a patient. Physicians cannot delegate to athletic trainers the authority for dispensing prescription medications under current medication-dispensing laws, since athletic trainers are not authorized by law to dispense these drugs under any circumstances. The improper delegation of authority by the physician or the dispensing of prescription medications by the athletic trainer (even with permission of the physician), places both parties at risk for legal liability.

If athletics departments choose to provide prescription and/or nonprescription medications, they must comply with the applicable state and federal laws for doing so. It is strongly encouraged that athletics departments and their team physicians work with their on-site or area pharmacists to develop specific policies.

The following items form a minimal framework for an appropriate drug-distribution program in a college-athletics environment. Since there is extreme variability in state laws, it is imperative for each institution to consult with legal counsel in order to be in full compliance.

1. Drug-dispensing practices are subject to and should be in compliance with all state, federal and Drug Enforcement Agency (DEA) regulations. Relevant items include appropriate packaging, labeling, counseling and education, records keeping, and accountability for all drugs dispensed.

2. Certified athletic trainers should not be assigned duties that may be performed only by physicians or pharmacists. A team physician cannot delegate diagnosis, prescription-drug control or prescription-dispensing duties to athletic trainers.

3. Drug-distribution records should be created and maintained where dispensing occurs in accordance with appropriate legal guidelines. The record should be current and easily accessible by appropriate medical personnel.

4. All prescription and over-the-counter (OTC) medications should be stored in designated areas that assure proper environmental (dry with temperatures between 59 and 86 degrees Fahrenheit) and security conditions.

5. All drug stocks should be examined at regular intervals for removal of any outdated, deteriorated or recalled medications.

6. All emergency and travel kits containing prescription and OTC drugs should be routinely inspected for drug quality and security.

7. Individuals receiving medication should be properly informed about what they are taking and how they
should take it. Drug allergies, chronic medical conditions and concurrent medication use should be documented in the student-athlete’s medical record and readily retrievable.

8. Follow-up should be performed to be sure student-athletes are complying with the drug regimen and to ensure that drug therapy is effective.

References

The NCAA and professional societies such as the American Medical Association (AMA) and the American College of Sports Medicine (ACSM) denounce the employment of nontherapeutic drugs by student-athletes. These include drugs that are taken in an effort to enhance athletic performance, and those drugs that are used recreationally by student-athletes. Examples include but are not limited to alcohol, amphetamines, ephedrine, (ma huang), anabolic-androgenic steroids, barbiturates, caffeine, cocaine, heroin, LSD, PCP, marijuana and all forms of tobacco. The use of such drugs is contrary to the rules and ethical principles of athletics competition. The patterns of drug use and the specific drugs change frequently, and it is incumbent upon NCAA member institutions to keep abreast of current trends. The NCAA conducts drug-use surveys of student-athletes in all sports and across all divisions every four years. According to the 2001 NCAA Study of Substance Use Habits of College Student-Athletes, the percentage of student-athletes who use alcohol decreased by 10 percent (88.5-79.5) over the last 12 years, while the percentage of student-athletes who use marijuana during those same 12 years remained fairly constant (28 percent). The full results of the 2004 and past surveys are available to all member institutions and can be used to educate staff and plan educational and treatment programs for its student-athletes.

The NCAA maintains a banned drug classes list and conducts drug testing at championship events and year-round random testing in sports. Some NCAA member institutions have developed drug-testing programs to combat the use of nontherapeutic substances. Such programs should follow guidelines established by the NCAA Committee on Competitive Safeguards and Medical Aspects of Sports. While not all member institutions have enacted their own drug-testing programs, it is essential to have some type of drug-education program as outlined in Guideline 1h. Drug testing should not be viewed as a replacement for a solid drug-education program. Indeed, the most common drugs of abuse, alcohol and tobacco, are not included in NCAA drug testing. The use of spit or smokeless tobacco can drop by 30 percent due to a vigorous educational program.

All medical staff should be familiar with the regulations regarding dispensing medications as listed in Guideline 1f.

All member institutions, their athletics staff and their student-athletes should be aware of current trends in drug use and abuse, and the current NCAA list of banned drug classes. It is incumbent upon NCAA member institutions to act as a positive influence in order to combat the use of drugs in sport and society.

References

1. American College of Sports Medicine, Position Stand: The Use of Anabolic-Androgenic Steroids in Sports. 1984. (P.O. Box 1440, Indianapolis, IN 46206-1440)
2. American Medical Association Compendium, Policy Statement: Medical and Non-Medical Use of Anabolic-Androgenic Steroids (105.001), 1990. (P.O. Box 10946, Chicago, IL 60610)
3. American Medical Association Compendium, Policy Statement: Non-Therapeutic Use of Pharmacological Agents by Athletes (105.016), 1990. (P.O. Box 10946, Chicago, IL 60610)
4. NCAA Study of Substance Use Habits of College Student-Athletes. NCAA, P.O. Box 6222, Indianapolis, Indiana 46206-6222, June 2004.
The NCAA is committed to education in the area of drugs and alcohol abuse. The following are the minimum guidelines an institution should have in place to assure it is conducting an adequate drug-education program for its student-athletes.

In addition to the signing of the NCAA drug-testing consent form, each athletics department should conduct a drug and alcohol education program for all athletic teams. The program should raise the awareness of current student-athletes and educate those students who may transfer mid-year. The athletics director, coach, compliance officer and sports medicine personnel should also participate in the program.

This program should:

1. Review and develop individual team drug and alcohol policies.
2. Review the athletics department's drug and alcohol policy.*
3. Review institutional drug and alcohol policy.
4. Review conference drug and alcohol policy.
5. Review institutional or conference drug-testing programs (if any).
6. Review NCAA alcohol, tobacco and drug policy, including the tobacco ban, list of banned drug classes and testing protocol.
7. View the NCAA drug-education and drug-testing video.†
8. Discuss nutritional supplements and their inherent risks.
9. Allow time for questions from student-athletes.

Schools are encouraged to contact the NCAA for specific banned drug and testing protocol questions. The NCAA subscribes to the Resource Exchange Center (REC), which provides a confidential hot-line and Web site to answer questions from student-athletes and athletics personnel on whether nutritional supplements and medications contain banned substances. This service is free of charge to all member institutions. To access the REC, go to www.drugfreesport.com/rec. The password is ncaa1, ncaa2, or ncaa3, depending on your divisional classification.

*Each athletics department should have a written policy on alcohol, tobacco and other drugs. This policy should include a statement on recruitment activities, drug testing, discipline, and counseling or treatment options.

†Compliance officers are sent a copy of the NCAA Drug-Testing Video. The video also can be viewed online at NCAA.org/health-safety.
Institutional Alcohol, Tobacco and Other Drug Education Programs

Why Risk It?
For Free, Confidential information on dietary supplements or banned substances, contact The REC.

IGNORANCE IS NO EXCUSE!

www.drugfreesport.com/rec

The REC is a service provided by The National Center for Drug Free Sport for organizations that subscribe.
MEDICAL ISSUES

Also Found on the NCAA Web site at:
NCAA.org/health-safety
GUIDELINE 2a
Medical Disqualification of the Student-Athlete
January 1979 • Revised June 2004

Withholding a student-athlete from activity. The team physician has the final responsibility to determine when a student-athlete is removed or withheld from participation due to an injury, an illness or pregnancy. In addition, clearance for that individual to return to activity is solely the responsibility of the team physician or that physician’s designated representative.

Procedure to medically disqualify a student-athlete during an NCAA championship. As the event sponsor, the NCAA seeks to ensure that all student-athletes are physically fit to participate in its championships and have valid medical clearance to participate in the competition.

1. The NCAA tournament physician, as designated by the host school, has the unchallengeable authority to determine whether a student-athlete with an injury, illness or other medical condition (e.g., skin infection) may expose others to a significantly enhanced risk of harm and, if so, to disqualify the student-athlete from continued participation.

2. For all other incidences, the student-athlete’s on-site team physician can determine whether a student-athlete with an injury or illness should continue to participate or is disqualified. In the absence of a team physician, the NCAA tournament physician will examine the student-athlete and has valid medical authority to disqualify him or her if the student-athlete’s injury, illness or medical condition poses a potentially life-threatening risk to himself or herself.

3. The chair of the governing sports committee (or a designated representative) shall be responsible for administrative enforcement of the medical judgment, if it involves disqualification.

Reference
Cold exposure can be uncomfortable, impair performance and even become life-threatening. Conditions created by cold exposure include wind chill, frostbite and hypothermia. Wind chill can make activity uncomfortable and can impair performance when muscle temperature declines. Frostbite is the freezing of superficial tissues, usually of the face, ears, fingers and toes. Hypothermia, a significant drop in body temperature, occurs with rapid cooling, exhaustion and energy depletion. The resulting failure of the temperature-regulating mechanisms constitutes a medical emergency.

Hypothermia frequently occurs at temperatures above freezing. A wet and windy 30- to 50-degree exposure may be as serious as a subzero exposure. As the wind chill chart indicates, wind speed interacts with ambient temperature to significantly increase body cooling. When the body and clothing are wet (whether from sweat, rain, or snow or immersion), the cooling is even more pronounced due to evaporation of the water held close to the skin by wet clothing.

Cold exposure affects many body systems. The combination of cold air and the deep breathing of exercise can trigger an asthma attack (bronchospasm). Cold air is not dangerous to lung tissue, but it can cause coughing, chest tightness and discomfort, such as a burning sensation in the throat and nasal passages.

Physiological factors, such as strength, power, endurance and aerobic capacity, are reduced by a drop in muscle temperature or body core temperature. Musculoskeletal injuries may increase when exercising vigorously in the cold, especially in the absence of adequate warm-up.

Early recognition of cold stress is important. Shivering, a means for the body to generate heat, serves as an early warning sign. Excessive shivering contributes to fatigue and makes performance of motor skills more difficult. Other signs include numbness and pain in fingers and toes or a burning sensation of the ears, nose or exposed flesh. As cold exposure continues, the core temperature drops. When the cold reaches the brain, a victim may exhibit sluggishness, poor judgment and may appear disoriented. Speech becomes slow and slurred, and movements become clumsy. The victim wants to lie down and rest. This is a medical emergency. Transport as soon as possible. First
Cold Stress

Aid involves getting the victim warm and dry and, if possible, hydrated with a warm beverage.

Prevention of cold stress is primarily a matter of dressing properly to control the climate next to the skin. Inadequate energy and fluid intake can significantly decrease cold tolerance. To prevent cold problems, student-athletes should be instructed as follows:

Clothing

Dress in layers and try to stay dry. Layers can be added or removed depending on temperature, activity and wind chill. Begin with a wicking fabric next to the skin. Add lightweight pile or wool layers for warmth and use a windblock garment to avoid wind chill. Because heat loss from the head and neck may be as much as 50 percent of total heat loss, the head should be covered during cold stress conditions. Hand covering should be worn as needed. Mittens are warmer than gloves.

Moisture, whether from perspiration or precipitation, significantly increases body heat loss. Keep dry by wearing a wicking fabric next to the body, hands and feet. Polypropylene or wool wick moisture away from the skin and retain insulating properties when wet. Cotton is a poor choice for winter wear since it holds moisture and loses insulating properties when wet.

Energy/Hydration

Maintain energy levels via use of meals, energy snacks and carbohydrate/electrolyte sports drinks. Negative energy balance increases the susceptibility to hypothermia. Stay hydrated, since dehydration affects the body’s ability to regulate temperature and increases the risk of frostbite. Fluids are as important in the cold as in the heat. Avoid alcohol, caffeine, nicotine and other drugs that cause water loss, vasodilatation or vasoconstriction of skin vessels.

Fatigue/Exhaustion

Fatigue and exhaustion deplete energy reserves. Exertional fatigue and exhaustion increase the susceptibility to hypothermia, as does sleep loss.

Warm-Up

Warm-up thoroughly and keep warm throughout the practice or competition to prevent a drop in muscle or body temperature. Time the warm-up to lead almost immediately to competition. After competition, add clothing to avoid rapid cooling. Warm extremely cold air with a mask or scarf to prevent bronchospasm.

Partner

Never train alone. An injury such as a sprained ankle can become life threatening when it occurs during a cold-weather workout on an isolated trail.

Avoidance of cold injury is a matter of recognizing the potential for cold stress and dressing appropriately. While there is considerable variation in cold tolerance, repeated exposure increases tolerance. Adequate energy, hydration and warm-up will minimize problems, as will avoidance of fatigue. Training with a partner helps to ensure early recognition of dangerous conditions and problems. Considerations for canceling a practice or event should include specific environmental conditions, the experience and cold tolerance of the student-athletes, and the factors associated with cold stress.
Cold Stress

Practice or competition in hot and/or humid environmental conditions poses special problems for student-athletes. Heat stress and resulting heat illness is a primary concern in these conditions. Although deaths from heat illness are rare, constant surveillance and education are necessary to prevent heat-related problems. The following practices should be observed:

1. An initial complete medical history and physical evaluation, followed by the completion of a yearly health-status questionnaire before practice begins, should be required. A history of previous heat illness, and the type and duration of training activities for the previous month, also are essential.

2. Prevention of heat illness begins with aerobic conditioning, which provides partial acclimatization to the heat. Student-athletes should gradually increase exposure to hot and/or humid environmental conditions over a period of seven to 10 days to achieve heat acclimatization. Each exposure should involve a gradual increase in the intensity and duration of exercise until the exercise is comparable to that likely to occur in competition. When conditions are extreme, training or competition should be held during a cooler time of day. Hydration should be maintained during training and acclimatization.

3. Clothing and protective equipment, such as helmets, shoulder pads and shin guards, increase heat stress by interfering with the evaporation of sweat and inhibiting other pathways for heat loss. Dark-colored clothing increases the body's absorption of solar radiation. Frequent rest periods should be scheduled so that the gear and clothing can be loosened to allow heat loss. During the acclimatization process, it may be advisable to use a minimum of protective gear and clothing and to practice in T-shirts, shorts, socks and shoes. Excessive tape and outer clothing that restrict sweat evaporation should be avoided. Rubberized suits should never be used.

4. To identify heat stress conditions, regular measurements of environmental conditions are recommended. Use the ambient temperature and humidity to assess heat stress (see Figure 1). Utilize the wet-bulb temperature, dry-bulb temperature and globe temperature to assess the potential impact of humidity, air temperature and solar radiation. A wet-bulb temperature higher than 75 degrees Fahrenheit (24 degrees Celsius) or humidity above 90 percent may represent dangerous conditions, especially if the sun is shining or the student-athletes are not acclimatized. A wet-bulb globe temperature (WBGT) higher than 82 degrees Fahrenheit (28 degrees Celsius) suggests that careful control of all activity be undertaken. The value for caution may need to be adjusted down when wearing protective equipment (see reference No. 6).

![Figure 1: Temperature-Humidity Activity Index](image)
5. Dehydration must be avoided not only because it hinders performance, but also because it can result in profound heat illness. Fluid replacement must be readily available. Student-athletes should be encouraged to drink as much and as frequently as comfort allows. They should drink one to two cups of water in the hour before practice or competition, and continue drinking during activity (every 15 to 20 minutes). For activity up to two hours in duration, most weight loss represents water loss, and that fluid loss should be replaced as soon as possible. After activity, the student-athlete should rehydrate with a volume that exceeds the amount lost during the activity. A two-pound weight loss represents approximately one quart of fluid loss. Urine volume and color can be used to assess general hydration. If output is plentiful and the color is “pale yellow or straw-colored,” the student-athlete is not dehydrated.

Water and carbohydrate/electrolyte drinks are appropriate for exercise in heat. Carbohydrate/electrolyte drinks enhance fluid intake, and the electrolytes aid in the retention of fluid. In addition, the carbohydrates provide energy and help maintain immune and cognitive function.

6. By recording the body weight of each student-athlete before and after workout or practice, progressive dehydration or loss of body fluids can be detected, and the potential harmful effects of dehydration can be avoided. Those who lose five percent of their body weight or more over a period of several days should be evaluated medically and their activity restricted until rehydration has occurred.

7. Some student-athletes may be more susceptible to heat illness. Susceptible individuals include those with: inadequate acclimatization or aerobic fitness, excess body fat, a history of heat illness, a febrile condition, inadequate rehydration, and those who regularly push themselves to capacity. Also, substances with a diuretic effect or that act as stimulants may increase risk of heat illness. These substances may be found in some prescription and over-the-counter drugs, nutritional supplements and foods.

Student-athletes should be informed of and monitored for signs of heat illness such as: cessation of sweating, weakness, cramping, rapid and weak pulse, pale or flushed skin, excessive fatigue, nausea, unsteadiness, disturbance of vision and incoherency. If heat illness is suspected, prompt emergency treatment is recommended. When training in hot and/or humid conditions, student-athletes should train with a partner or be under observation by a coach or athletic trainer.

First aid for heat illness

Heat exhaustion—Symptoms usually include profound weakness and exhaustion, and often dizziness, syncope, muscle cramps and nausea. Heat exhaustion is a form of shock due to depletion of body fluids. First aid should include rest in a cool, shaded environment. Fluids should be given orally. A physician should determine the need for electrolytes and additional medical care. Although rapid recovery is not unusual, student-athletes suffering from heat exhaustion should not be allowed to practice or compete for the remainder of that day.
Prevention of Heat Illness

Heatstroke—Heatstroke is a medical emergency. Medical care must be obtained at once; a delay in treatment can be fatal. This condition is characterized by a very high body temperature and usually (but not always) hot, dry skin, which indicates failure of the primary temperature-regulating mechanism (sweating), and possibly seizure or coma. First aid includes immediate cooling of the body without causing the student-athlete to shiver. Recommended methods for cooling include using ice, immersion in cold water, or wetting the body and fanning vigorously. Victims of heatstroke should be hospitalized and monitored carefully.

RISK FACTORS

Air temperature, humidity and dehydration are common risk factors associated with heat illness. In addition, the following factors also put student-athletes at increased risk:

1. **Nutritional supplements.** Nutritional supplements may contain stimulants, such as ephedrine, ma huang or caffeine.* These substances can dehydrate the body and/or increase metabolism and heat production. They are of particular concern in people with underlying medical conditions such as hypertension, asthma and thyroid dysfunction.

2. **Medication/drugs.** Certain medications and drugs have similar effects. These substances may be ingested through over-the-counter or prescription medications or with food. Examples include antihistamines, decongestants, certain asthma medications, Ritalin, diuretics and alcohol.

3. **Medical conditions.** Examples include illness with fever, gastrointestinal illness, previous heat illness, obesity or sickle cell trait.

4. **Acclimatization/fitness level.** Lack of acclimatization to the heat or poor conditioning.

5. **Clothing.** Dark clothing absorbs heat. Protective equipment limits heat dissipation.

*NOTE: Stimulant drugs such as amphetamines, ecstasy, ephedrine and caffeine are on the NCAA banned substance list and may be known by other names. A complete list of banned drug classes can be found on the NCAA Web site at NCAA.org/health-safety.

References

1. American College of Sports Medicine Position Stand: The Prevention of Thermal Injuries During Distance Running, 1985. (P.O. Box 1440, Indianapolis, IN 46206-1440)

There are two general types of weight loss common to student-athletes who participate in intercollegiate sports: loss of body water or loss of body weight (fat and lean tissue). Dehydration, the loss of body water, leads to a state of negative water balance called dehydration. It is brought about by withholding fluids and carbohydrates, the promotion of extensive sweating and the use of emetics, diuretics or laxatives. The problem is most evident in those who must be certified to participate in a given weight class, but it also is present in other athletics groups.

There is no valid reason for subjecting the student-athlete's body to intentional dehydration, which can lead to a variety of adverse physiological effects, including significant pathology and even death. Dehydration in excess of 3 to 5 percent leads to reduced strength and muscular endurance, reduced plasma and blood volume, compromised cardiac output (elevated heart rate, smaller stroke volume), impaired thermoregulation, decreased kidney blood flow and filtration, reduced liver glycogen stores, and loss of electrolytes. Pathological responses include life-threatening heat illness, rhabdomyolysis (severe muscle breakdown), kidney failure and cardiac arrest.

With extensive dehydration, attempts at acute rehydration usually are insufficient for body fluid and electrolyte homeostasis to be restored before competition. For example, in wrestling this is especially true between the official weigh-in and actual competition. All respected sports medicine authorities and organizations have condemned the practice of fluid deprivation. To promote sound practices, student-athletes and coaches should be educated about the physiological and pathological consequences of dehydration. The use of laxatives, emetics and diuretics should be prohibited. Similarly, the use of excessive food and fluid restriction, self-induced vomiting, vapor-impermeable suits (e.g., rubber or rubberized nylon), hot rooms, hot boxes and steam rooms should be prohibited. Excessive food restriction or self-induced vomiting may be symptoms of serious eating disorders (see Guideline 2f).

Dehydration is a potential health hazard that acts with poor nutrition and intense exercise to compromise health and athletic performance. The sensible alternative to dehydration weight loss involves: preseason determination of an acceptable (minimum) competitive weight, gradual weight loss to achieve the desired weight, and maintenance of the weight over the course of the competitive season. Standard body composition procedures should be utilized to determine the appropriate competitive weight. Spot checks (body composition or dehydration) should be used to assure compliance with the weight standard during the season. Student-athletes and coaches should be informed of the health consequences of dehydration, educated in proper weight-loss procedures, and subject to disciplinary action when approved rules are violated.

References

1. American College of Sports Medicine, Position Stand: Weight Loss in Wrestlers, 1995. (P.O. Box 1440, Indianapolis, IN 46206-1440).
Athletic performance is, to a great degree, dependent on the ability of the student-athlete to overcome resistance and to sustain aerobic and/or anaerobic power. Both of these elements of performance have important training and nutritional components and are, to a large degree, influenced by the student-athlete’s body composition. Coupled with the common perception of many student-athletes who compete in sports where appearance is a concern (swimming, diving, gymnastics, skating, etc.), attainment of an ‘ideal’ body composition often becomes a central theme of training.

Successful student-athletes achieve a body composition that is within a range associated with performance achievement in their specific sport. Each sport has different norms for the muscle and fat levels associated with a given height, and the student-athlete’s natural genetic predisposition for a certain body composition may encourage them to participate in a particular sport or take a specific position within a sport. For instance, linemen on football teams have different responsibilities than receivers, and this difference is manifested in physiques that are also different.

Besides the aesthetic and performance reasons for wanting to achieve an optimal body composition, there may also be safety reasons. A student-athlete who is carrying excess weight may be more prone to injury when performing difficult skills than the student-athlete with a more optimal body composition. However, the means student-athletes often use in an attempt to achieve an optimal body composition may be counterproductive. Diets and excessive training often result in such a severe energy deficit that, while total weight may be reduced, the constituents of weight also change, commonly with a lower muscle mass and a relatively higher fat mass. The resulting higher body fat percentage and lower muscle mass inevitably results in a performance reduction that motivates the student-athlete to follow regimens that produce even greater energy deficits. This downward energy intake spiral may be the precursor to eating disorders that place the student-athlete at serious health risk. Therefore, while achieving an optimal body composition is useful for high-level athletic performance, the processes student-athletes often use to attain an optimal body composition may reduce athletic performance, may place them at a higher injury risk and may increase health risks.

Purpose of Body Composition Assessment

The purpose of body composition assessment is to determine the student-athlete’s distribution of lean
Assessment of Body Composition

(muscle) mass and fat mass. A high lean mass to fat mass ratio is often synonymous with a high strength to weight ratio, which is typically associated with athletic success. However, there is no single ideal body composition for all student-athletes in all sports. Each sport has a range of lean mass and fat mass associated with it, and each student-athlete in a sport has an individual range that is ideal for them. Student-athletes who try to achieve an arbitrary body composition that is not right for them are likely to place themselves at health risk and will not achieve the performance benefits they seek. Therefore, a key to body composition assessment is the establishment of an acceptable range of lean and fat mass for the individual student-athlete, and the monitoring of lean and fat mass over regular time intervals to assure a stability or growth of the lean mass and a proportional maintenance or reduction of the fat mass. Importantly, there should be just as much attention given to changes in lean mass (both in weight of lean mass and proportion of lean mass) as the attention traditionally given to body fat percent.

In the absence of published standards for a sport, one strategy for determining if a student-athlete is within the body composition standards for the sport is to obtain a body fat percent value for each student-athlete on a team (using the same method of assessment), and obtaining an average and standard deviation for body fat percent for the team. Student-athletes who are within 1 standard deviation (i.e., a Z-score of ±1) of the team mean should be considered within the range for the sport. Those greater than or less than ±1 standard deviation should be evaluated to determine the appropriateness of their training schedule and nutrient intake. In addition, it is important for coaches and student-athletes to use functional performance measures in determining the appropriateness of a student-athlete’s body composition. Student-athletes outside the normal range of body fat percent for the sport may have achieved an optimal body composition for their genetic makeup, and may have objective performance measures (i.e., such as jump height) that are well within the range of others on the team.

Body composition can be measured indirectly by several methods, including hydrostatic weighing, skinfold and girth measurements (applied to a nomogram or prediction equation), bioelectrical impedance analysis (BIA), dual-energy x-ray absorptiometry (DEXA), ultrasound, computerized tomography, magnetic-resonance imagery, isotope dilution, neutron-activation analysis, potassium-40 counting, and infrared interactance. The most common of the methods now used to assess body composition in student-athletes are skinfold measurements, DEXA, hydrostatic weighing and BIA. While hydrostatic weighing and DEXA are considered by many to be the “gold standards” of the indirect measurement techniques, there are still questions regarding the validity of these techniques when applied to humans. Since skinfold-based prediction equations typically use hydrostatic weighing or DEXA as the criterion methods, results from skinfolds typically carry the prediction errors of the criterion methods plus the added measurement errors associated with obtaining skinfold values. BIA has become popular because of its non-invasiveness and speed of measurement, but results from this technique are influenced by hydration state. Since student-athletes have hydration states that are in constant flux, BIA results may be misleading unless strict hydration protocols are followed. In general, all of the commonly used techniques should be viewed as providing only estimates of body composition, and since these techniques use different theoretical assumptions in their prediction of body composition, values obtained from one technique should not be compared with values obtained from another technique.
Assessment of Body Composition

Concerns with Body Composition Assessment

1. Using Weight as a Marker of Body Composition—While the collection of weight data is a necessary adjunct to body composition assessment, by itself weight may be a misleading value. For instance, young student-athletes have the expectation of growth and increasing weight, so gradual increases in weight should not be interpreted as a body composition problem. A student-athlete who has increased resistance training to improve strength may also have a higher weight, but since this increased weight is likely to result from more muscle, this should be viewed as a positive change. The important consideration for weight is that it can be (and often is) misused as a measure of body composition, and this misuse can detract from the purpose of body composition assessment.

2. Comparing Body Composition Values with Others Athletes—Student-athletes often compare body composition values with other student-athletes, but this comparison is not meaningful and it may drive a student-athlete to change body composition in a way that negatively impacts both performance and health. Health professionals involved in obtaining body composition data should be sensitive to the confidentiality of this information, and explain to each student-athlete that differences in height, age and gender are likely to result in differences in body composition, without necessarily any differences in performance. Strategies for achieving this include:
 - Obtaining body composition values with only one student-athlete at a time, to limit the chance that the data will be shared.
 - Giving student-athletes information on body composition using phrases such as “within the desirable range” rather than a raw value, such as saying “your body fat level is 18 percent.”
 - Providing athletes with information on how they have changed between assessments, rather than offering the current value.
 - Increasing the focus on muscle mass, and decreasing the focus on body fat.
 - Using body composition values as a means of helping to explain changes in objectively measured performance outcomes.

3. Seeking an Arbitrarily Low Level of Body Fat—Most student-athletes would like their body fat level to be as low as possible. However, student-athletes often try to seek a body fat level that is arbitrarily low and this can increase the frequency of illness, increase the risk of injury, lengthen the time the student-athlete can return to training after an injury, reduce performance and increase the risk of an eating disorder. Body composition values should be thought of as numbers on a continuum that are usual for a sport. If a student-athlete falls anywhere on that continuum, it is likely that factors other than body composition (training, skills acquisition, etc.) will be the major predictors of performance success.

4. Frequency of Body Composition Assessment—Student-athletes who have frequent weight and/or skinfolds taken are fearful of the outcome, since the results are often (inappropriately) used punitively. Real changes in body composition occur slowly, so there is little need to assess student-athletes weekly, biweekly or even monthly. If body composition measurements are sufficient and agreed upon by all parties, measurement frequency of twice a year should be sufficient. In some isolated circumstances in which a student-athlete has been injured or is suffering from a disease state, it is reasonable for a physician to recommend a more frequent assessment rate to control for changes in lean mass. Student-athletes and/or coaches who desire more frequent body composition or weight measurement should shift their focus to assessments of objective performance-related measurers.
Summary

The assessment of body composition can be a useful tool in helping the student-athlete and coach understand the changes that are occurring as a result of training and nutritional factors. However, the body composition measurement process and the values obtained can be a sensitive issue for the student-athlete. A legitimate purpose for body composition assessment should dictate the use of these measurement techniques. Health professionals involved in obtaining body composition data should focus on using the same technique with the same prediction equations to derive valid comparative data over time. Institutions should have a protocol in place outlining the rationale for body composition measurements, who is allowed to measure the student-athlete, who is permitted to discuss the results with the student-athlete and what frequency of body composition measurement is appropriate. The student-athlete should not feel forced or obligated to undergo body composition or weight measurement. Everyone involved directly or indirectly with body composition measurement should understand that inappropriate measurement and use of body composition data might contribute to the student-athlete experiencing unhealthy emotional stress. This stress can lead to the development or enhancement of eating disorders in the student-athlete (see Guideline 2f). All coaches (sport or strength/conditioning) should be aware of the sizable influence they may have on the behaviors and actions of their student-athletes. Many student-athletes are sensitive about body fat, so care should be taken to apply body composition measurement, when appropriate, in a way that enhances the student-athlete’s well-being.
Assessment of Body Composition

References

Athletic performance and recovery from training are enhanced by optimal nutrition. Proper nutrition includes adequate quality and quantity of food and fluid to provide energy and essential nutrients during training and competition. During the competitive season, energy and macronutrient needs (especially carbohydrate and protein intake) must be met in order to maintain body weight, replenish carbohydrate stores in muscle (glycogen), and provide adequate protein for building and repair of tissue. The following key points summarize current energy, nutrient and fluid recommendations for competitive student-athletes as recommended by the American College of Sports Medicine. These general guidelines should be specifically adjusted for each individual student-athlete by a sports nutrition expert.

Carbohydrates are important fuels for all student-athletes in order to replace muscle glycogen, prevent the loss of muscle mass and prevent low blood sugar or hypoglycemia. The recommendations for adequate carbohydrate are between 4 to 5 grams (g) per pound of body weight per day. It is assumed that the predominant source of carbohydrates come from nonrefined carbohydrates (whole grains, breads, pasta, fruits and vegetables). Protein requirements are slightly higher in both endurance (0.5 to 0.7 g per lb. body weight per day) and strength-trained student-athletes (0.8 to 0.9 g per lb. body weight per day) above the typical recommended daily intake (0.4 g per lb. of body weight). Fortunately, this recommendation for protein is easily achieved in a well-balanced diet without additional supplements. Fat intake should be less than 30 percent of total daily calories in student-athletes and is an important source of essential fatty acids, fat-soluble vitamins and energy.

In general, vitamin and mineral supplements are not required if a student-athlete is consuming adequate energy from a variety of foods to maintain body weight. However, the risk of micronutrient deficiencies are greatest in student-athletes restricting calories, engaging in rapid weight-loss practices or eliminating specific foods or food groups from their diet. A multivitamin providing 100 percent of the daily recommended intake is appropriate for these student-athletes. Female student-athletes are especially prone to deficiencies in calcium and iron due to the menstrual cycle, avoidance of animal products and/or energy restriction. The diets of long-distance runners and vegetarians (especially females) and their iron status should be evaluated. However, megadoses of specific vitamins or minerals (10 to 100 times the dose of daily requirements) are not recommended.

During periods of heavy training, adequate calories and fluid must be consumed. Strength-training student-athletes need at least 20 to 23 calories per pound of body weight each day and endurance student-athletes have even higher energy requirements. Low energy intake can result in loss of muscle mass, risk of fatigue, injury and illness. A low caloric intake (fewer than 1,800 to 2,000 calories) in female student-athletes can lead to disruption of reproductive function.

The maintenance or attainment of an ideal body weight is sport-specific and represents an important part of a nutritional program. However, student-athletes in cer-
tain sports face a difficult paradox in their training/nutrition regimen, particularly those competing in “weight class” sports (e.g., wrestling, rowing), sports that favor those with lower body weight (e.g., distance running, gymnastics), sports requiring student-athletes to wear body contour-revealing clothing (track, diving, swimming, volleyball) and sports with subjective judging related to “aesthetics” (gymnastics, diving). These student-athletes are encouraged to eat to provide the necessary energy sources for performance, yet they often face self- or team-imposed weight restrictions. Emphasis on low body weight or low body fat may benefit performance only if the guidelines are realistic, the calorie intake is reasonable and the diet is nutritionally well-balanced according to the Food Pyramid. The use of extreme weight-control measures can jeopardize the health of the student-athlete and possibly trigger behaviors associated with eating disorders.

NCAA studies have shown that at least 40 percent of member institutions reported at least one case of anorexia nervosa or bulimia nervosa in their athletics programs. Anorexia Nervosa is defined as self-imposed starvation in an obsessive effort to lose weight and to become thin. The number of student-athletes who exhibit behaviors associated with disordered eating (but do not fit the diagnostic criteria of anorexia nervosa and bulimia nervosa) is even higher. Although eating disorders are much more prevalent in women (approximately 90 percent of the reports in the NCAA studies were in women's sports), eating disorders also occur in men.

The warning signs of the two most serious eating disorders include:

Anorexia Nervosa — Drastic loss in weight, a preoccupation with food, calories and weight, wearing baggy or layered clothing, relentless, excessive exercise, mood swings, and avoiding food-related social activities.

Bulimia Nervosa — Recurring binge eating, usually followed by some method of purging, such as vomiting, diuretic or laxative abuse or intensive exercise. Warning signs — excessive concern about weight, bathroom visits after meals, depressive moods, strict dieting followed by eating binges, and increasing criticism of one's body. It is important to note that the presence of one or two of these warning signs does not necessarily indicate the presence of an eating disorder, but may indicate a subclinical form of disordered eating. Absolute diagnosis should be done by appropriate professionals.

Menstrual irregularities can be associated with eating disorders and other conditions. However, all student-athletes with menstrual irregularities should be seen by a physician (see Guideline 2k).

Eating disorders are often an expression of underlying emotional distress that may develop long before the individual was involved in athletics. It has been suggested that stress, whether it be from participating in athletics, striving for academic success or pursuing social relationships, may trigger psychological problems, such as eating disorders, in susceptible individuals. Eating disorders can be triggered in such individuals by a single event or comments from a person important to the individual. In athletic performance, such triggering mechanisms may include offhand remarks about appearance or constant badgering about a student-athlete’s body weight, body composition or body type. Coaches, athletic trainers and supervising physicians must be watchful for student-athletes who may be prone to eating disorders, particularly in sports in which appearance or body weight is a factor in performance.

Disordered eating can lead to semi-starvation and dehydration, resulting in loss of muscular strength and endurance, decreased aerobic and anaerobic power, loss of coordination, impaired judgment, and other complications that decrease performance and impair health. These symptoms may be readily apparent or may not be evident for an extended period of time. Many student-athletes have performed successfully while experiencing an eating disorder. Therefore, diagnosis of this problem should not be based entirely on a decrease in athletic performance.
Body composition and body weight can affect exercise performance but should not be used as the main criteria for participation in sports. Decisions regarding weight loss should be based on the following recommendations to reduce the potential of an eating disorder:

1. Frequent weigh-ins (either as a team or individually) are discouraged.
2. If weight loss (fat loss) is desired, it should start early — before the competitive season — and involve a trained medical or nutrition professional.
3. Weight loss should be agreed upon by the student-athlete and appropriate medical and nutritional personnel, with consultation from the coach.
4. A responsible and realistic weight loss plan should be developed on an individual basis.

Along with the NCAA Nutrition and Performance Web page, the American College of Sports Medicine has published position stands on the female athlete triad, nutrition and athletic performance. These materials are valuable resources for NCAA institutions.

For each student-athlete, there may be a unique optimal body composition for performance, for health and for self-esteem. However, in most cases, these three values are NOT identical. Mental and physical health should not be sacrificed for performance. An erratic or lost menstrual cycle, sluggishness or an obsession with achieving a number on a scale may be signs that health is being challenged.

References

Nutritional and dietary supplements are marketed to student-athletes to improve performance, recovery time and muscle-building capability. Many student-athletes use nutritional supplements despite the lack of proof of effectiveness. In addition, such substances are expensive and may potentially be harmful to health or performance. Of greater concern is the lack of regulation and safety in the manufacture of dietary supplements. Many compounds obtained from specialty “nutrition” stores and mail-order businesses may not be subject to the strict regulations set by the United States Food and Drug Administration. Therefore, the contents of many of these compounds are not represented accurately on the list of ingredients and may contain impurities or banned substances, which may cause a student-athlete to test positive. Positive drug-test appeals based on the claim that the student-athletes did not know the substances they were taking contained banned drugs have not been successful. Therefore, student-athletes should be instructed to consult with the university’s sports medicine staff before taking ANY nutritional supplement.

It is well known that a high-carbohydrate diet is associated with improved performance and enhanced ability to train. The carbohydrate content of the diet should be 55 to 65 percent of total energy intake (about 5 to 10 gm/kg body weight). The lower end of the range should be ingested during regular training; the high end during intense training. High-carbohydrate foods and beverages can provide the necessary amount of carbohydrate for the high caloric demand of most sports to optimize performance. Low-carbohydrate diets are not advantageous for athletes during intense training and may not enhance performance. A high-carbohydrate diet consisting of complex carbohydrates, fruits, vegetables, low-fat dairy products and whole grains (along with adequate protein) is the optimal diet for peak performance.

Protein and amino acid supplements are popular with body-builders and strength-training student-athletes. Although protein is needed to repair and build muscles after strenuous training, most studies have shown that student-athletes ingest a sufficient amount without supplements. The recommended amount of protein in the diet should be 12 to 15 percent of total energy intake (about 1.4 to 1.6 gm/kg of body weight) for all types of student-athletes. Although selected amino acid supplements are purported to increase the production of anabolic hormones, studies using manufacturer-recommended amounts have not found increases in growth hormone or muscle mass. Ingesting high amounts of single
Dietary Supplements and Banned Substances

Amino acids is contraindicated because they can affect the absorption of other essential amino acids, produce nausea, and/or impair kidney function and hydration status. A supplement that contains greater than 30 percent of calories from protein is not a permissible substance for distribution according to current NCAA rules.

Other commonly advertised supplements are vitamins and minerals. Most scientific evidence shows that selected vitamins and minerals will not enhance performance provided no deficiency exists. Some vitamins and minerals are marketed to student-athletes for other benefits. For example, the antioxidants, vitamin E, C and beta-carotene are used by many student-athletes because they believe that these antioxidants will protect them from the damaging effects of aerobic exercise. Although such exercise can cause muscle damage, studies have found that training will increase the body’s natural antioxidant defense system so that megadoses of antioxidants may not be needed. The mineral chromium has been suggested to increase muscle mass and decrease fat, but studies have not substantiated this claim. Similarly, magnesium is purported, but not proven, to prevent cramps. To obtain necessary vitamins and minerals, student-athletes should eat a wide variety of foods because not all vitamins and minerals are found in every food.

Other substances naturally occurring in foods, such as carnitine, herbal extracts and special enzyme formulations, do not provide any benefit to performance. The high-protein diet has received recent attention, but data showing that this diet will enhance performance are weak, plus there is concern that such a diet will negatively affect health. Creatine has been found in some laboratory studies to enhance short-term, high-intensity exercise capability, delay fatigue on repeated bouts of such exercise and increase strength. Several studies have contradicted these claims, and, moreover, the safety of creatine supplements has not been verified. Weight gains of one to three kilograms per week have been found in creatine users, but the cause is unclear.

Many other “high-tech” nutritional or dietary supplements may seem to be effective at first, but this is likely a placebo effect — if student-athletes believe these substances will enhance performance, they may train harder or work more efficiently. Ultimately, most nutritional supplements are ineffective, costly and unnecessary.

Student-athletes should be aware that nutritional supplements are not limited to pills and powders; “energy” drinks that contain stimulants are popular. Many of these contain large amounts of either caffeine or other stimulants, both of which can result in a positive drug test. Student-athletes should be wary of drinks that promise an “energy boost,” because they may contain banned stimulants. In addition, the use of stimulants while exercising can increase the risk of heat illness.

Student-athletes should be provided accurate and sound information on nutritional supplements. It is not worth risking eligibility for products that have not been scientifically proven to improve performance and may contain banned substances. Given the above information and consistent with NCAA Bylaw 16.5.2 (Nutritional Supplements), which states, “An institution may provide only nonmuscle-building nutritional supplements to a student-athlete at any time for the purpose of providing additional calories and electrolytes, provided the supplements do not contain any NCAA banned substances,” athletics staff should not distribute or endorse nutritional or dietary supplements.
The NCAA subscribes to the Resource Exchange Center (REC), which provides a confidential hotline and Web site to answer questions from student-athletes and athletics personnel on whether nutritional supplements and medications contain banned substances. This service is free of charge to all member institutions. To access the REC, go to www.drugfreesport.com/rec. The password is ncaa1, ncaa2, or ncaa3, depending on your divisional classification.

References

“Burners” or “stingers” are so named because the injuries can cause a sudden pain and numbness along the forearm and hand. The more formal medical terminology is transient brachial plexopathy or an injury to the brachial plexus. A brachial plexus injury may also involve injury to a cervical root. An injury to the spinal cord itself is more serious and frequently does not fall under this category of injury, although it shares certain symptoms; therefore, spinal cord injuries should be ruled out when diagnosing stingers.

The majority of stingers occur in football. Such injuries have been reported in 52 percent of college football players during a single season. As many as 70 percent of college football players have experienced stingers. Stingers also can occur in a variety of other sports, including basketball, ice hockey, wrestling and some field events in track.

Mechanism
The most common mechanism for stingers is head movement in an opposite direction from the shoulder either from a hit to the head or downward traction of the shoulder. This can stretch the nerve roots on the side receiving the blow (traction), or compress or pinch those on the opposite side. Contact to the side of the neck may cause a direct contusion to the brachial plexus. In football, improper blocking and tackling techniques may result in a brachial plexus injury. Coaches, parents and student-athletes should be cautioned regarding the consequences of improper techniques which may result in cervical spine injuries or trauma to the brachial plexus.

Symptoms and Severity
Student-athletes who suffer burners may be unable to move the affected arm from their side and will complain of burning pain, and potentially, numbness traveling from the injured side of the neck through the shoulder down the arm and forearm, and sometimes into the hand. Weakness may be present in the muscles of the shoulder, elbow and hand.

Brachial plexus injuries can be classified into three categories. The mildest form (Grade 1) are neuropraxic injuries that involve demyelination of the axon sheath without intrinsic axonal disruption. Complete recovery typically occurs in a few seconds to days. Grade 1 injuries are the most common in athletics. Grade 2 injuries involve axonotmesis or disruption of the axon and myelin sheath with preservation of the epineurium, perineurium, and endoneurium, which can serve as the conduit for the regenerating axon as it re-grows at 1 to 7 millimeters per day. Weakness can last for weeks but full recovery typically occurs. Grade 3 injuries, neurotmesis or complete nerve transections are rare in athletes. Surgical repair of the nerve is required in these cases and complete recovery may not occur.

These classifications have more meaning with regard to anticipated recovery of function than a grading on the severity of symptoms at the time of initial injury.

Treatment and Return to Play
Burners and stingers typically result in symptoms that are sensory in nature, frequently involving the C5 and C6 dermatomes. All athletes sustaining burners should be removed from competition and examined thoroughly for injury to the cervical spine and shoulder. All cervical roots should be assessed for motor and sensory function. If symptoms clear within seconds to several minutes and are not associated with any neck pain, limitation of neck movement or signs of shoulder subluxation or dislocation, the athlete can safely return to competition. It is
important to re-examine the athlete after the game and for a few successive days to detect any reoccurrence of weakness or alteration in sensory exam.

If sensory complaints or weakness persists for more than a few minutes, a full medical evaluation with radiographs and consideration for a MRI should be done to rule out cervical disk or other compressive pathology. If symptoms persist for more than 2 to 3 weeks, an EMG may be helpful in assessing the extent of injury. However, an EMG should not be used for return-to-play criteria, as EMG changes may persist for several years after the symptoms have resolved. Shoulder injuries (acromioclavicular separation, shoulder subluxation or dislocation, and clavicular fractures) should be considered in the differential diagnosis of the athlete with transient or prolonged neurologic symptoms of the upper extremity. Any injured athlete who presents with specific cervical-point tenderness, neck stiffness, bony deformity, fear of moving his/her head and/or complains of a heavy head should be immobilized on a spine board (as one would for a cervical spine fracture) and transported to a medical facility for a more thorough evaluation. Bilateral symptoms indicate that the cord itself has been traumatized and may suggested transient quadriplegia. These athletes should also be immobilized and transported to a medical facility for a more thorough evaluation.

All athletes sustaining burners or stingers should undergo a physical rehabilitation program that includes neck and trunk strengthening exercises. The fit of shoulder pads should be re-checked and consideration of other athletic protective equipment, such as neck rolls and/or collars, should be given. The athlete’s tackling techniques should be reviewed.

Stinger assessment should be part of the student-athletes’ pre-season physical and mental history (see handbook Guideline No. 1b) so that these “at-risk” athletes can be instructed in a prevention preventative exercise program and be provided with proper protective equipment.

Recurrent Burners

Recurrent burners may be common; 87 percent of athletes in one study had experienced more than one. Medical personnel should pay special attention to this condition. Although rare, risk of permanent nerve injury exists for those with recurrent burners. Therefore, participants should report every occurrence to their certified athletic trainers or team physician. Any player with persistent pain, burning, numbness and/or weakness (lasting longer than two minutes) should be held out of competition and referred to a physician for further evaluation.
A Word of Caution
Management of the student-athlete with recurrent burners can be difficult. There are no clear guidelines concerning return to play. Although some risk of permanent nerve injury exists, a review of the literature shows this risk to be small for those with recurrent episodes. The most important concern for student-athletes with recurrent burners is to stress the importance of reporting all symptoms to the attending medical personnel so that a thorough physical examination, with particular attention to strength and sensory changes, can be obtained. Any worsening of symptoms should provoke a more thorough evaluation.

References

More than 300,000 concussions occur every year, and participation in sport is a common cause of these injuries. These injuries are often difficult to detect, with athletes often underreporting their injury, minimizing their importance or not recognizing that an injury has occurred. At the college level, these injuries are more common in certain sports, such as football, ice hockey, men's and women's soccer, and men's lacrosse. However, they also account for a significant percentage of injuries in men's and women's basketball, women's lacrosse, and other sports traditionally considered "noncontact."

The incidence in helmeted versus nonhelmeted sports is also similar. In the years 2000 to 2002, the rate of concussion during games per 1,000 athlete exposures for football was 3.1, for men's ice hockey 2.4, for men's wrestling 1.6, for men's lacrosse 1.4, for women's ice hockey 2.4, for women's soccer 2.1, for men's soccer 1.7, for field hockey 0.8, for women's lacrosse 0.8, for women's basketball 0.7, and for men's basketball 0.5, accounting for between 6.4 and 18.3 percent of the injuries for these sports as reported by the NCAA Injury Surveillance System (ISS).

Assessment and management of concussive injuries, and return-to-play decisions remain some of the most difficult responsibilities facing the sports medicine team. There are potentially serious complications of multiple or severe concussions, including second impact syndrome, postconcussive syndrome, or post-traumatic encephalopathy. Though there is some controversy as to the existence of second impact syndrome, in which a second impact with potentially catastrophic consequences occurs before the full recovery after a first insult, the risks include severe cognitive compromise and death. Other associated injuries which can occur in the setting of concussion include seizures, cervical spine injuries, skull fractures and/or intracranial bleed. Due to the serious nature of mild traumatic brain injury, and these serious potential complications, it is imperative that the health care professionals taking care of athletes are able to recognize, evaluate and treat these injuries in a complete and progressive fashion.

Concussion or mild traumatic brain injury (mTBI) has been defined as "a complex pathophysiological process affecting the brain, induced by traumatic biomechanical forces." Although concussion most commonly occurs after a direct blow to the head, it can occur after a blow elsewhere that is transmitted.
Concussion or Mild Traumatic Brain Injury

to the head. Concussions can be defined by the clinical features, pathophysiological changes and/or biomechanical forces that occur, and these have been described in the literature. The neurochemical and neurometabolic changes that occur in concussive injury have been elucidated, and exciting research is underway describing the genetic factors that may play a role in determining which individuals are at an increased risk for sustaining brain injury.

Most commonly, concussion is characterized by the rapid onset of cognitive impairment that is self-limited and spontaneously resolves. The acute symptoms of concussion, listed below, are felt to reflect a functional disturbance in cognitive function instead of structural abnormalities, which is why diagnostic tests such as magnetic resonance imaging (MRI) and computerized tomography (CT) scans are most often normal. These studies may have their role in assessing and evaluating the head-injured athlete whenever there is concern for the associated injuries of skull fracture, intracranial bleeding and seizures, when there is concern for structural abnormalities or when the symptoms of an athlete persist or deteriorate.

Concussion is associated with clinical scenarios that often clear spontaneously, and may or may not be associated with loss of consciousness (LOC).

The sideline evaluation of the brain-injured athlete should include an assessment of airway, breathing, and circulation (ABC's), followed by an assessment of the cervical spine and skull for associated injury. The sideline evaluation should also include a neurological and mental status examination and some form of brief neuropsychological testing to assess memory function and attention. This can be in the form of questions regarding the particular practice or competition, previous game results, and remote and recent memory, and questions to test the athlete’s recall of words, months of the year backwards and calculations. Special note should be made regarding the presence and duration of retrograde or anterograde amnesia, and the presence and duration of confusion. A timeline of injury and the presence of symptoms should be noted. These sideline tests should be performed and repeated as necessary, but do not take the place of other comprehensive neuropsychological tests.

Once an injury occurs and an initial assessment has been made, it is important to determine an initial plan of action, which includes deciding on whether additional referral to a physician and/or emergency department should take place, and determining the follow-up care. The medical staff should also determine whether additional observation or hospital admission should be considered.

Follow-up care and instructions should be given to the athlete, and ensuring that they are not left alone for an initial period of time should be considered. Athletes should avoid alcohol or other substances.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>SIGNS AND SYMPTOMS OF mTBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of consciousness (LOC)</td>
<td>Visual Disturbances (Photophobia, blurry Phono/photophobia vision, double vision)</td>
</tr>
<tr>
<td>Confusion</td>
<td>Disequilibrium</td>
</tr>
<tr>
<td>Post-traumatic amnesia (PTA)</td>
<td>Feeling “in a fog,” “zoned out”</td>
</tr>
<tr>
<td>Retrograde amnesia (RGA)</td>
<td>Vacant stare</td>
</tr>
<tr>
<td>Disorientation</td>
<td>Emotional lability</td>
</tr>
<tr>
<td>Delayed verbal and motor responses</td>
<td>Dizziness</td>
</tr>
<tr>
<td>Inability to focus</td>
<td>Slurred/incoherent speech</td>
</tr>
<tr>
<td>Headache</td>
<td></td>
</tr>
<tr>
<td>Nausea/Vomiting</td>
<td></td>
</tr>
<tr>
<td>Excessive drowsiness</td>
<td></td>
</tr>
</tbody>
</table>
Concussion or Mild Traumatic Brain Injury

that will impair their cognitive function, and also avoid aspirin and other medications that can increase their risk of bleeding.

As mentioned previously, conventional imaging studies such as MRI and CT scans are usually normal in mTBI. However, these studies are considered an adjunct when any structural lesion, such as an intracranial bleed or fracture, is suspected. If an athlete experiences prolonged loss of consciousness, confusion, seizure activity, focal neurologic deficits or persistent clinical or cognitive symptoms, then additional testing may be indicated.

There are several grading systems and return-to-play guidelines in the literature regarding concussion in sport (AAN, Torg, Cantu). However, there may be limitations because they presume that LOC is associated with more severe injuries. It has been demonstrated that LOC does not correlate with severity of injury in patients presenting to an emergency department with closed head injury, and has also been demonstrated in athletes with concussion (Lovell ’99). It has been further demonstrated that retrograde amnesia (RGA), post-traumatic amnesia (PTA), and the duration of confusion and mental status changes longer than five minutes may be more sensitive indicators of injury severity (Collins ’03). More recent grading systems have been published which attempt to take into account the expanding research in the field of mTBI in athletes. Though it is useful to become familiar with these guidelines, it is important to remember that many of these injuries are best treated in an individual fashion (Cantu ’01, Vienna Conference, NATA ’04).

Several recent publications have endorsed the use of neurocognitive or neuropsychological testing as the cornerstone of concussion evaluation. These tests provide a reliable assessment and quantification of brain function by examining brain-behavior relationships. These tests are designed to measure a broad range of cognitive function, including speed of information processing, memory recall, attention and concentration, reaction time, scanning and visual tracking ability, and problem solving ability. Several computerized versions of these tests have also been designed to improve the availability of these tests, and make them easier to distribute and utilize. Ideally, these tests are performed before the season as a “baseline” with which post-injury tests can be compared. Despite the utility of neuropsychological test batteries in the assessment and treatment of concussion in athletes, several questions remain unanswered. Further research is needed to understand the complete role of neuropsychological testing.

Given these limitations, it is essential that the medical care team treating athletes continue to rely on its clinical skills in evaluating the head-injured athlete to the best of its ability. It is essential that no athlete be allowed to return to participation when any symptoms, including mild headache, persist. It has also been recommended that for any injury that involves significant symptoms, long duration of symptoms or difficulties with memory function (either retrograde or antegrade), not be allowed to return to play during the same day of competition. The duration of time that an athlete should be kept out of physi-

| Table 2 |
| SYMPTOMS OF POST-CONCUSSION SYNDROME |
Loss of intellectual capacity	Fatigue
Poor recent memory	Irritability
Personality changes	Phono/photophobia
Headaches	Sleep disturbances
Dizziness	Sleep disturbances
Lack of concentration	Depressed mood
Poor attention	Anxiety
Concussion or Mild Traumatic Brain Injury

cal activity is unclear, and in most instances, individualized return-to-play decisions should be made. These decisions will often depend on the clinical symptoms, previous history of concussion and severity of previous concussions. Additional factors include the sport, position, age, support system for the athlete and the overall “readiness” of the athlete to return to sport.

Once an athlete is completely asymptomatic, the return-to-play progression should occur in a step-wise fashion with gradual increments in physical exertion and risk of contact. After a period of remaining asymptomatic, the first step is an “exertional challenge” in which the athlete exercises for 15 to 20 minutes in an activity such as biking or running in which he/she increases his/her heartrate and breaks a sweat. If he/she does not experience any symptoms, this can be followed by a steady increase in exertion, followed by return-to-sport-specific activities that do not put the athlete at risk for contact. Examples include dribbling a ball or shooting, stickwork or passing, or other activities. This allows the athlete to return to the practice setting, albeit in a limited role. Finally, the athlete can be progressed to practice activities with limited contact and finally full contact. How quickly one moves through this progression remains controversial.

References

GUIDELINE 2j
Skin Infections in Wrestling
July 1981 • Revised June 2004

Data from the NCAA Injury Surveillance System (ISS) indicate that skin infections are associated with at least 15 percent of the practice time-loss injuries in wrestling. It is recommended that qualified personnel examine the skin over the entire body, and the hair of the scalp and pubic areas of all wrestlers before any participation in the sport.

Open wounds and infectious skin conditions that cannot be adequately protected to prevent their exposure to others should be considered cause for medical disqualification from practice or competition.

Categories of skin conditions and examples include:

1. Bacterial skin infections
 a. impetigo;
 b. erysipelas;
 c. carbuncle;
 d. staphylococcal disease;
 e. folliculitis (generalized);
 f. hidradenitis suppurativa;

Note: An antibiotic resistant form of Staphylococcus aureus known as Methicillin-resistant Staphylococcus Aureus (MRSA) is moving from acute care settings out into the community. Outbreaks have been documented in organized collegiate sports.

2. Parasitic skin infections
 a. pediculosis;
 b. scabies;

3. Viral skin infections
 a. herpes simplex;
 b. herpes zoster (chicken pox);
 c. molluscum contagiosum; and

4. Fungal skin infections
 a. tinea corporis (ringworm).

Note: Current knowledge indicates that many fungal infections are easily transmitted by skin-to-skin contact. In most cases, these skin conditions can be covered with a securely attached bandage or nonpermeable patch to allow participation.

Besides identification of infected individuals and their prompt treatment, prevention can be aided through proper routine cleaning of all equipment, including mats, and shared common areas, such as locker rooms.

Skin infections may be transmitted by both direct (person to person) and indirect (person to inanimate surface to person) contact. Infection control measures, or measures that seek to prevent the spread of disease, should be utilized to reduce the risks of disease transmission. Efforts should be made to improve student-athlete hygiene practices, to utilize recommended procedures for cleaning and disinfection of surfaces,
and to handle blood and other bodily fluids appropriately. Suggested measures include: promotion of hand hygiene practices; educating athletes not to pick, squeeze or scratch skin lesions; encouraging athletes to shower after activity; educating athletes not to share protective gear, towels or razors; ensuring recommended procedures for cleaning and disinfection of wrestling mats, athletic equipment, locker rooms and whirlpool tubs are closely followed; and verifying clean-up of blood and other potentially infectious materials is done according to the Occupational Health and Safety Administration (OSHA) Bloodborne pathogens Standard #29CFR1910.1030.

This guideline is intended for general information only. Team physicians, athletic trainers, coaches and others who work directly with wrestling should refer to the current year’s NCAA Wrestling Rules Book or Wrestling Championships Handbook for specific rules regarding skin infections.

References

GUIDELINE 2k
Menstrual-Cycle Dysfunction
January 1986 • Revised June 2002

The NCAA Committee on Competitive Safeguards and Medical Aspects of Sports acknowledges the significant input of Dr. Anne Loucks, Ohio University, in the revision of this guideline.

In 80 percent of college-age women, the length of the menstrual cycle ranges from 23 to 35 days. Oligomenorrhea refers to a menstrual cycle that occurs inconsistently, irregularly and at longer intervals. Amenorrhea is the cessation of the menstrual cycle with ovulation occurring infrequently or not at all. A serious medical problem of amenorrhea is the lower level of circulating estrogen (hypoestrogenism), and its potential health consequences.

The prevalence of menstrual-cycle irregularities found in surveys depends on the definition of menstrual function used, but has been reported to be as high as 44 percent in athletic women. Research suggests that failure to increase dietary energy intake in compensation for the expenditure of energy during exercise can disrupt the hypothalamic-pituitary-ovarian (HPO) axis. Exercise training appears to have no suppressive effect on the HPO axis beyond the impact of its strain on energy availability.

There are several important reasons to discuss the treatment of menstrual-cycle irregularities. One reason is infertility; fortunately, the long-term effects of menstrual cycle dysfunction appear to be reversible. Another medical consequence is skeletal demineralization, which occurs in hypoestrogenic women. Skeletal demineralization was first observed in amenorrheic athletes in 1984. Initially, the lumbar spine appeared to be the primary site where skeletal demineralization occurs, but new techniques for measuring bone mineral density show that demineralization occurs throughout the skeleton. Some women with menstrual disturbances involved in high-impact activities, such as gymnastics and figure skating, display less demineralization than women runners. Despite resumption of normal menses, the loss of bone mass during prolonged hypoestrogenemia is not completely reversible. Therefore, young women with low levels of circulating estrogen, due to menstrual irregularities, are at risk for low peak bone mass which may increase the potential for osteoporotic fractures later in life. An increased incidence of stress fractures also has been observed in the long bones and feet of women with menstrual irregularities.

The treatment goal for women with menstrual irregularities is the re-establishment of an appropriate hormonal environment for the maintenance of bone health. This can be achieved by the re-establishment of a regular menstrual cycle or by hormone replacement therapy, although neither change has been shown to result in complete recovery of the lost bone mass. Additional research is necessary to develop a specific prognosis for exercise-induced menstrual dysfunction.

All student-athletes with menstrual irregularities should be seen by a physician. General guidelines include:

1. Full medical evaluation, including an endocrine work-up and bone mineral density test;
2. Nutritional counseling with specific emphasis on:
 a. Total caloric intake versus energy expenditure.
 b. Calcium intake of 1,200 to 1,500 milligrams a day; and
3. Routine monitoring of the diet, menstrual function, weight-training schedule and exercise habits.

If this treatment scheme does not result in regular menstrual cycles, estrogen-progesterone supplementation should be considered. This should be coupled with appropriate counseling on hormone replacement and review of family history. Hormone-replacement therapy is thought to be important for amenorrheic women.
and oligomenorrheic women whose hormonal profile reveals an estrogen deficiency.

The relationship between amenorrhea, osteoporosis and disordered eating is termed the “female athlete triad.” In 1997, the American College of Sports Medicine issued a position stand calling for all individuals working with physically active girls and women to be educated about the female athlete triad and develop plans for prevention, recognition, treatment and risk reduction. Recommendations are that any student-athlete who presents with any one component of the triad be screened for the other two components and referred for medical evaluation.

Other recommendations include:
• All sports medicine professionals, including coaches and athletic trainers, learn to recognize the symptoms and risks associated with the female athlete triad.
• Coaches and others should avoid pressuring female athletes to diet and lose weight and should be educated about the warning signs of eating disorders.
• Sports medicine professionals, athletics administrators and officials of sport governing bodies share a responsibility to prevent, recognize and treat this disorder.

• Sports medicine professionals, athletics administrators and officials of sport governing bodies should work toward offering opportunities for educating and monitoring coaches to ensure safe training practices.
• Young, physically active females should be educated about proper nutrition, safe training practices, and the risks and warning signs of the female athlete triad.

References

Blood-borne pathogens are disease-causing microorganisms that can be potentially transmitted through blood contact. The blood-borne pathogens of concern include (but are not limited to) the hepatitis B virus (HBV) and the human immunodeficiency virus (HIV). Infections with these (HBV, HIV) viruses have increased throughout the last decade among all portions of the general population. These diseases have potential for catastrophic health consequences. Knowledge and awareness of appropriate preventive strategies are essential for all members of society, including student-athletes.

The particular blood-borne pathogens HBV and HIV are transmitted through sexual contact (heterosexual and homosexual), direct contact with infected blood or blood components, and perinatally from mother to baby. In addition, behaviors such as body piercing and tattoos may place student-athletes at some increased risk for contracting HBV, HIV or Hepatitis C.

The emphasis for the student-athlete and the athletics health-care team should be placed predominately on education and concern about these traditional routes of transmission from behaviors off the athletics field. Experts have concurred that the risk of transmission on the athletics field is minimal.

Hepatitis B Virus (HBV)

HBV is a blood-borne pathogen that can cause infection of the liver. Many of those infected will have no symptoms or a mild flu-like illness. One-third will have severe hepatitis, which will cause the death of one percent of that group. Approximately 300,000 cases of acute HBV infection occur in the United States every year, mostly in adults.

Five to 10 percent of acutely infected adults become chronically infected with the virus (HBV carriers). Currently in the United States there are approximately one million chronic carriers. Chronic complications of HBV infection include cirrhosis of the liver and liver cancer.

Individuals at the greatest risk for becoming infected include those practicing risky behaviors of having unprotected sexual intercourse or sharing intravenous (IV) needles in any form. There is also evidence that household contacts with chronic HBV carriers can lead to infection without having had sexual intercourse or sharing of IV needles. These rare instances probably occur when the virus is transmitted through unrecognized-wound or mucous-membrane exposure.

The incidence of HBV in student-athletes is presumably low, but those participating in risky behavior off the athletics field have an increased likelihood of infection (just as in the case of HIV). An effective vaccine to prevent HBV is available and recommended for all college students by the American College Health Association. Numerous other groups have recognized the potential benefits of universal vaccination of the entire adolescent and young-adult population.

HIV (AIDS Virus)

The Acquired Immunodeficiency Syndrome (AIDS) is caused by the human immunodeficiency virus (HIV), which infects cells of the immune system and other tissues, such as the brain. Some of those infected with HIV will remain asymptomatic for many years. Others will more rapidly develop manifestations of HIV disease (i.e., AIDS). Some experts believe virtually all persons infected with HIV eventually will develop AIDS and that AIDS is uniformly fatal. In the United States, adolescents are at special risk for HIV infection. This age group is one of the fastest growing groups of new HIV infections. Approximately 14 percent of all new HIV infections occur in persons aged between 12 to 24 years. The risk of infection is increased
by having unprotected sexual intercourse, and the sharing of IV needles in any form. Like HBV, there is evidence that suggests that HIV has been transmitted in household-contact settings without sexual contact or IV needle sharing among those household contacts5,6. Similar to HBV, these rare instances probably occurred through unrecognized wound or mucous membrane exposure.

Comparison of HBV/HIV

Hepatitis B is a much more “sturdy/durable” virus than HIV and is much more concentrated in blood. HBV has a much more likely transmission with exposure to infected blood; particularly parenteral (needle-stick) exposure, but also exposure to open wounds and mucous membranes. There has been one well-documented case of transmission of HBV in the athletics setting, among sumo wrestlers in Japan. There are no validated cases of HIV transmission in the athletics setting. The risk of transmission for either HBV or HIV on the field is considered minimal; however, most experts agree that the specific epidemiologic and biologic characteristics of the HBV virus make it a realistic concern for transmission in sports with sustained close physical contact, such as wrestling. HBV is considered to have a potentially higher risk of transmission than HIV.

Testing of Student-Athletes

Routine mandatory testing of student-athletes for either HBV or HIV for participation purposes is not recommended. Individuals who desire voluntary testing based on personal reasons and risk factors, however, should be assisted in obtaining such services by appropriate campus or public-health officials.

Student-athletes who engage in high-risk behavior are encouraged to seek counseling and testing. Knowledge of one’s HBV and HIV infection is helpful for a variety of reasons, including the availability of potentially effective therapy for asymptomatic patients, and modification of behavior, which can prevent transmission of the virus to others. Appropriate counseling regarding exercise and sports participation also can be accomplished.

Participation by the Student-Athlete with Hepatitis B (HBV) Infection

Individual’s Health—In general, acute HBV should be viewed just as other viral infections. Decisions regarding ability to play are made according to clinical signs and symptoms, such as fatigue or fever. There is no evidence that intense, highly competitive training is a problem for the asymptomatic HBV carrier (acute or chronic) without evidence of organ impairment. Therefore, the simple presence of HBV infection does not mandate removal from play.

Disease Transmission—The student-athlete with either acute or chronic HBV infection presents very limited risk of disease transmission in most sports. However, the HBV carrier presents a more distinct transmission risk than the HIV carrier (see previous discussion of comparison of HBV to HIV) in sports with higher potential for blood exposure and sustained close body contact. Within the NCAA, wrestling is the sport that best fits this description.

The specific epidemiologic and biologic characteristics of hepatitis B virus form the basis for the following recommendation: If a student-athlete develops acute HBV illness, it is prudent to consider removal of the individual from combative, sustained close-contact sports (e.g., wrestling) until loss of infectivity is known. (The best marker for infectivity is the HBV antigen, which may persist up to 20 weeks in the acute stage). Student-athletes in such sports who develop chronic HBV infections (especially those who are e-antigen positive) should probably
be removed from competition indefinitely, due to the small but realistic risk of transmitting HBV to other student-athletes.

Participation of the Student-Athlete with HIV

Individual’s Health—In general, the decision to allow an HIV positive student-athlete to participate in intercollegiate athletics should be made on the basis of the individual’s health status. If the student-athlete is asymptomatic and without evidence of deficiencies in immunologic function, then the presence of HIV infection in and of itself does not mandate removal from play.

The team physician must be knowledgeable in the issues surrounding the management of HIV-infected student-athletes. HIV must be recognized as a potentially chronic disease, frequently affording the affected individual many years of excellent health and productive life during its natural history. During this period of preserved health, the team physician may be involved in a series of complex issues surrounding the advisability of continued exercise and athletics competition.

The decision to advise continued athletics competition should involve the student-athlete, the student-athlete’s personal physician, and the team physician. Variables to be considered in reaching the decision include the student-athlete’s current state of health and the status of his/her HIV infection, the nature and intensity of his/her training, and potential contribution of stress from athletics competition to deterioration of his/her health status.

There is no evidence that exercise and training of moderate intensity is harmful to the health of HIV-infected individuals. What little data that exists on the effects of intense training on the HIV-infected individual demonstrates no evidence of health risk. However, there is no data looking at the effects of long-term intense training and competition at an elite, highly competitive level on the health of the HIV-infected student-athlete.

Disease Transmission—Concerns of transmission in athletics revolve around exposure to contaminated blood through open wounds or mucous membranes. Precise risk of such transmission is impossible to calculate but epidemiologic and biologic evidence suggests that it is extremely low (see section on comparison of HBV/HIV). There have been no validated reports of transmission of HIV in the athletics setting. Therefore, there is no recommended restriction of student-athletes merely because they are infected with HIV, although one court has upheld the exclusion of an HIV-positive athlete from the contact sport of karate.

Administrative Issues

The identity of individuals infected with a blood-borne pathogen must remain confidential. Only those persons in whom the infected student-athlete chooses to confide have a right to know about this aspect of the student-athlete’s medical history. This confidentiality must be respected in every case and at all times by all college officials, including coaches, unless the student-athlete chooses to make the fact public.

Athletics Health-Care Responsibilities

The following recommendations are designed to further minimize risk of blood-borne pathogens and other potentially infectious organisms transmission in the context of athletics events and to provide treatment guidelines for caregivers. In the past, these guidelines were referred to as “Universal (blood and body fluid) Precautions.” Over time, the recognition of “Body Substance Isolation,” or that infectious diseases may also be transmitted from moist body substances, has led to a blending of...
terms now referred to as “Standard Precautions.” Standard precautions apply to blood, body fluids, secretions and excretions, except sweat, regardless of whether or not they contain visible blood. These guidelines, originally developed for health-care, have additions or modifications relevant to athletics. They are divided into two sections — the care of the student-athlete, and cleaning and disinfection of environmental surfaces.

Care of the Athlete:

1. All personnel involved in sports who care for injured or bleeding student-athletes should be properly trained in first aid and standard precautions.

2. Assemble and maintain equipment and/or supplies for treating injured/bleeding athletes. Items may include: Personal Protective Equipment (PPE) [minimal protection includes gloves, goggles, mask, fluid-resistant gown if chance of splash or splatter]; antiseptics; antimicrobial wipes; bandages or dressings; medical equipment needed for treatment; appropriately labeled “sharps” container for disposal of needles, syringes and scalpels; and waste receptacles appropriate for soiled equipment, uniforms, towels and other waste.

3. Pre-event preparation includes proper care for wounds, abrasions or cuts that may serve as a source of bleeding or as a port of entry for blood-borne pathogens or other potentially infectious organisms. These wounds should be covered with an occlusive dressing that will withstand the demands of competition. Likewise, care providers with healing wounds or dermatitis should have these areas adequately covered to prevent transmission to or from a participant. Student-athletes may be advised to wear more protective equipment on high-risk areas, such as elbows and hands.

4. The necessary equipment and/or supplies important for compliance with standard precautions should be available to caregivers. These supplies include appropriate gloves, disinfectant bleach, antiseptics, designated receptacles for soiled equipment and uniforms, bandages and/or dressings, and a container for appropriate disposal of needles, syringes or scalpels.

5. When a student-athlete is bleeding, the bleeding must be stopped and the open wound covered with a dressing sturdy enough to withstand the demands of activity before the student-athlete may continue participation in practice or competition. Current NCAA policy mandates the immediate, aggressive treatment of open wounds or skin lesions that are deemed potential risks for transmission of disease. Partici-
pants with active bleeding should be removed from the event as soon as is practical. Return to play is determined by appropriate medical staff personnel and/or sport officials. Any participant whose uniform is saturated with blood must change their uniform before return to participation.

6. During an event, early recognition of uncontrolled bleeding is the responsibility of officials, student-athletes, coaches and medical personnel. In particular, student-athletes should be aware of their responsibility to report a bleeding wound to the proper medical personnel.

7. Personnel managing an acute blood exposure must follow the guidelines for standard precaution. Gloves and other PPE, if necessary, should be worn for direct contact with blood or other body fluids. Gloves should be changed after treating each individual participant. After removing gloves, hands should be washed.

8. If blood or body fluids are transferred from an injured or bleeding student-athlete to the intact skin of another athlete, the event must be stopped, the skin cleaned with antimicrobial wipes to remove gross contaminate, and the athlete instructed to wash with soap and water as soon as possible. NOTE: Chemical germicides intended for use on environmental surfaces should never be used on student-athletes.

9. Any needles, syringes or scalpels should be carefully disposed of in an appropriately labeled “sharps” container. Medical equipment, bandages, dressings and other waste should be disposed of according to facility protocol. During events, uniforms or other contaminated linens should be disposed of in a designated container to prevent contamination of other items or personnel. At the end of competition, the linen should be laundered and dried according to facility protocol; hot water at temperatures of 71°C (160°F) for 25-minute cycles may be used.

Care of Environmental Surfaces:

1. All individuals responsible for cleaning and disinfection of blood spills or other potentially infectious materials (OPIM) should be properly trained on procedures and the use of standard precautions.

2. Assemble and maintain supplies for cleaning and disinfection of hard surfaces contaminated by blood or OPIM. Items include: Personal Protective Equipment (PPE) [gloves, goggles, mask, fluid-resistant gown if chance of splash or splatter]; supply of absorbent paper towels or disposable cloths; red plastic bag with the biohazard symbol on it or other waste receptacle according to facility protocol; and properly diluted tuberculocidal disinfectant or freshly prepared bleach solution diluted (1:100 bleach/water ratio).

3. Put on disposable gloves.

4. Remove visible organic material by covering with paper towels or disposable cloths. Place soiled towels or cloths in red bag or other waste receptacle according to facility protocol. (Use additional towels or cloths to remove as much organic material as possible from the surface and place in the waste receptacle.)

5. Spray the surface with a properly diluted chemical germicide used according to manufacturer’s label recommendations for disinfection, and wipe clean. Place soiled towels in waste receptacle.

6. Spray the surface with either a properly diluted tuberculocidal chemical germicide or a freshly prepared bleach solution diluted 1:100, and follow manufacturer’s label directions for disinfection; wipe clean. Place towels in waste receptacle.

7. Remove gloves and wash hands.

8. Dispose of waste according to facility protocol.
Final Notes:

1. All personnel responsible for caring for bleeding individuals should be encouraged to obtain a Hepatitis B (HBV) vaccination.

2. Latex allergies should be considered. Non-latex gloves may be used for treating student-athletes and the cleaning and disinfection of environmental surfaces.

3. Occupational Safety and Health Administration (OSHA) standards for Bloodborne Pathogens (Standard #29 CFR 1910.1030) and Hazard Communication (Standard #29 CFR 1910.1200) should be reviewed for further information.

Member institutions should ensure that policies exist for orientation and education of all health-care workers on the prevention and transmission of blood-borne pathogens. Additionally, in 1992, the Occupational Safety and Health Administration (OSHA) developed a standard directed to eliminating or minimizing occupational exposure to blood-borne pathogens. Many of the recommendations included in this guideline are part of the standard. Each member institution should determine the applicability of the OSHA standard to its personnel and facilities.
References

The use of local injectable anesthetics to treat sports-related injuries in college athletics is primarily left to the discretion of the individual treating physician, since there is little scientific research on the subject. This guideline provides basic recommendations for the use of these substances, which commonly include lidocaine (Xylocaine), one or two percent; bupivacaine (Marcaine), 0.25 to 0.50 percent; and mepivacaine (Carbocaine), three percent. The following recommendations do not include the use of corticosteroids.

It is recommended that:

1. These agents should be administered only by a qualified clinician who is licensed to perform this procedure and who is familiar with these agents’ actions, reactions, interactions and complications. The treating clinician should be well aware of the quantity of these agents that can be safely injected.

2. These agents should only be administered in facilities equipped to handle any allergic reaction, including a cardiopulmonary emergency, that may follow their use.

3. These agents should only be administered when medically justified, when the risk of administration is fully explained to the patient, when the use is not harmful to continued athletics activity and when there is no enhancement of a risk of injury.

The following procedures are not recommended:

1. The use of local anesthetic injections if they jeopardize the ability of the student-athlete to protect himself or herself from injury.

2. The administration of these drugs by anyone other than a qualified clinician licensed to perform this procedure.

3. The use of these drugs in combination with epinephrine or other vasoconstrictor agents in fingers, toes, earlobes and other areas where a decrease in circulation, even if only temporary, could result in significant harm.
Corticosteroids, alone or in combination with local anesthetics, have been used for many years to treat certain sports-related injuries. This guideline is an attempt to identify specific circumstances in which corticosteroids may be appropriate and also to remind both physicians and student-athletes of the inherent dangers associated with their use.

The most common reason for the use of corticosteroids in athletics is the treatment of chronic overuse syndromes such as bursitis, tenosynovitis and muscle origin pain (for example, lateral epicondylitis). They have also been used to try to prevent redevelopment of a ganglion, and to reduce keloid scar formation. Rarely is it appropriate to treat acute syndromes such as acromio-clavicular (AC) joint separations or hip pointers with a corticosteroid.

There is still much to be learned about the effects of intra-articular, intraligamentous or intratendinous injection of corticosteroids. Researchers have noted reduced synthesis of articular cartilage after corticosteroid administration in both animals and human models. However, a causal relationship between the intra-articular corticosteroid and degeneration of articular cartilage has not been established. Research also has shown that a single intraligamentous or multiple intra-articular injections have the potential to cause significant and long-lasting deterioration in the mechanical properties of ligaments and collagenous tissues in animal models. Finally, studies have shown significant degenerative changes in active animal tendons treated with a corticosteroid as early as 48 hours after injection.

This research provides the basis for the following recommendations regarding the administration of corticosteroids in college athletics.

It is recommended that:

1. Injectable corticosteroids should be administered only after more conservative treatments, including nonsteroidal anti-inflammatory
agents, rest, ice, ultrasound and various treatment modalities, have been exhausted.

2. Only those physicians who are knowledgeable about the chemical makeup, dosage, onset of action, duration and potential toxicity of these agents should administer corticosteroids.

3. These agents should be administered only in facilities which are equipped to deal with allergic reactions, including cardiopulmonary emergencies.

4. Repeated corticosteroid injections at a specific site should be done only after the consequences and benefits of the injections have been thoroughly evaluated.

5. Corticosteroid injections only should be done if a therapeutic effect is medically warranted and the student-athlete is not subject to either short- or long-term significant risk.

6. These agents should only be administered when medically justified, when the risk of administration is fully explained to the patient, when the use is not harmful to continued athletics activity and when there is no enhancement of a risk of injury.

The following procedures are not recommended:

1. Intra-articular injections, particularly in major weight-bearing joints. Intra-articular injections have a potential softening effect on articular cartilage.

2. Intratendinous injections, since such injections have been associated with an increased risk of rupture.

3. Administration of injected corticosteroids immediately before a competition.

4. Administration of corticosteroids in acute trauma.

5. Administration of corticosteroids in infection.

References

GUIDELINE 20
Depression: Interventions for Intercollegiate Athletics

June 2006

The NCAA Committee on Competitive Safeguards and Medical Aspects of Sports acknowledges the significant input of Sam Maniar, Licensed Psychologist, Ohio State University; Margot Putukian, Team Physician, Princeton University, and the National Institute of Mental Health, Bethesda, Maryland; for their original content.

Depression is more than the blues, let-downs from a game loss, or the normal daily ups and downs. It’s feeling “down” and “low” and “hopeless” for weeks at a time. Depression is a serious medical condition.

Little research has been conducted on depression among student-athletes; however, preliminary data indicate that student-athletes experience depressive symptoms and illness at similar or increased rates than non-athlete students. Approximately 9.5 percent of the population — or one out of 10 people — suffer from a depressive illness during any given one-year period. Women are twice as likely to experience depression as men; however, men are less likely to admit to depression. Moreover, even though the majority of peoples’ depressive disorders can be improved, most people with depression do not seek help.

Depression is important to assess among student-athletes because it impacts overall personal well-being, athletic performance, academic performance and injury healing. No two people become depressed in exactly the same way, but with the right treatment 80 percent of those who seek help get better, and many people begin to feel better in just a few weeks.

Depression and Intercollegiate Athletics

Student-athletes may experience depression because of genetic predisposition, developmental challenges of college transitions, academic stress, financial pressures, interpersonal difficulties and grief over loss/failure.

Participation in athletics does not provide student-athletes any immunity to these stresses, and it has the potential to pose additional demands. Student-athletes must balance all of the demands of being a college student along with athletics demands. This includes the physical demands of their sport, and the time commitment of participation, strength and conditioning, and skill instruction.

Most athletes participate almost year-round, often missing holidays, school and summer breaks, classes and even graduation. In addition, if they struggle in their performance, have difficulty interacting with the coach or teammates, or if they lose their passion for their sport, it can be very difficult to handle. Many athletes also define themselves by their role as an athlete, and an injury can be devastating.

Some attributes of athletics and competition can make it extremely difficult for student-athletes to obtain help. They are taught to “play through the pain,” struggle through adversity, handle problems on their own and “never let your enemies see you cry.” Seeking help is seen as a sign of weakness, when it should be recognized as a sign of strength.

Team dynamics also may be a factor. Problems often are kept “in the family,” and it is common for teams to try to solve problems by themselves, often ignoring signs or symptoms of more serious issues. Depression affects approximately 19 million Americans, and for many, the symptoms first appear before or during college.

Early identification and intervention (referral/treatment) for depression or other mental illness is extremely important, yet may be inhibited within the athletics culture for the following reasons:

• Physical illness or injury is more readily measured and treated within
Depression: Intervention for Intercollegiate Athletics

Sports medicine, and often there is less comfort in addressing mental illness.
• Mental wellness is not always perceived as necessary for athletic performance.
• The high profile of student-athletes may magnify the attention paid on campus and in the surrounding community when an athlete seeks help.
• History and tradition drive athletics, and can stand as barriers to change.
• The athletics department may have difficulty associating mental illness with athletic participation.

Enhancing knowledge and awareness of depressive disorders

Sports medicine staff, coaches and student-athletes should be knowledgeable about the types of depression and related symptoms. Men may be more willing to report fatigue, irritability, loss of interest in work or hobbies and sleep disturbances, rather than feelings of sadness, worthlessness and excessive guilt, which are commonly associated with depression in women. Men often mask depression with the use of alcohol or drugs, or by the socially acceptable habit of working excessively long hours.

Types of Depressive Illness

Depressive illnesses come in different forms. The following are general descriptions of the three most prevalent, though for an individual the number, severity and duration of symptoms will vary.

Major Depression, or “clinical depression,” is manifested by a combination of symptoms that interfere with a person’s once pleasurable activities (school, sport, sleep, eating, work). Student-athletes experiencing five or more symptoms as noted in Table 1 for two weeks or longer, or noticeable changes in usual functioning, are factors that should prompt referral to the team physician or mental health professional. Fifteen percent of people with major depression die by suicide. The rate of suicide in men is four times that of women, though more women attempt it during their lives.

Dysthymia is a less severe form of depression that tends to involve long-term, chronic depressive symptoms. Although these symptoms are not disabling, they do affect the individual’s overall functioning.

Bipolar Disorder, or “manic-depressive illness,” involves cycling mood swings from major depressive episodes to mania. Depressive episodes may last as little as two weeks, while manic episodes may last as little as four days. Manic signs and symptoms are presented in Table 2.

In addition to the three types of depressive disorders, student-athletes may suffer from an Adjustment Disorder. Adjustment disorders occur when an individual experiences depressive (or anxious) symptoms in response to a specific event or stressor (e.g., poor performance, poor relationship with a coach). An adjustment disorder can also progress into major depressive disorder.

Establishing a relationship with mental health services

Athletics departments should identify and foster relationships with mental health resources on campus or within the local community that will enable the development of a diverse and effective referral plan addressing the mental well-being of their student-athletes and staff. Because student-athletes are less likely to utilize counseling than nonathlete students, increasing interaction among mental health staff members, coaches and student-athletes will improve compliance with referrals. Athletics departments can seek psychological services and mental health professionals from the following resources.

• Athletics department sports medicine services.
• Athletics department academic services.
• University student health and counseling services.
• University medical school.
• University graduate programs (health sciences, education, medical, allied health).
• Local community.

Screening for depression and related risk for suicide

One way to ensure an athletics department is in tune with student-athletes’ mental well-being is to systematically include mental health check-ups, especially around high-risk times such as the loss of a coach, significant injury, being cut from the team and catastrophic events. Members of the sports medicine team and/or licensed mental health professionals should also screen athletes for depression at pre-established points in time (e.g., pre-participation, exit interviews). Research indicates that sports medicine professionals are better equipped to assess depression with the use of appropriate mental health instruments; simply asking about depression is not recommended.

A thorough assessment on the part of a mental health professional is also imperative to differentiate major depression from dysthymia and bipolar disorder, and other conditions, such as medication use, viral illness, anxiety disorders, over-training and illicit substance use. Depressive disorders may co-exist with substance-abuse disorders, panic disorder, obsessive-compulsive disorder, anorexia nervosa, bulimia nervosa and borderline personality disorder.

For depression screening, it is recommended that sports medicine teams utilize the Center for Epidemiological Studies Depression (CES-D) Scale published by the National Institute for Mental Health (NIMH). The CES-D is free to use and available at www.nimh.nih.gov. Other resources include such programs as QPR (Question, Persuade, Refer) Gatekeeper training; the Jed Foundation U Lifeline; and the Screening for Mental Health Depression and Anxiety Screenings. Information about these programs, and ways to incorporate them into student-athlete check-ups, can be found at NCAA.org/health-safety.

Seeking help

Most individuals who suffer from depression will fully recover to lead productive lives. A combination of counseling and medication appears to be the most effective treatment for moderately and severely depressed individuals. Although some improvement in mood may occur in the first few weeks, it typically takes three to four weeks of treatment to obtain the full therapeutic effect.

Medication should only be taken and/or stopped under the direct care of a physician, and the team physicians should consult with psychiatrists regarding complex mental health issues.

A referral should be made to a licensed mental health professional when coaches or sports medicine staff members witness any of the following with their student-athletes:

• Suicidal thoughts.
• Multiple depressive symptoms.
• A few depressive symptoms that persist for several weeks.
• Depressive symptoms that lead to more severe symptoms or destructive behaviors.
• Alcohol and drug abuse as an attempt at self treatment.
• Overtraining or burnout, since depression has many of the same symptoms.

Coaches and sports medicine staff members should follow the following guidelines in order to help enhancing student-athlete compliance with mental health referrals:

• Express confidence in the mental health professional (e.g., “I know that other student-athletes have felt better after talking to Dr. Kelly.”).
• Be concrete about what counseling is and how it could help (e.g.,...
“Amy can help you focus more on your strengths.”)
• Focus on similarities between the student-athlete and the mental health professional (e.g., “Bob has a sense of humor that you would appreciate.” “Dr. Jones is a former college student-athlete and understands the pressures student-athletes face.”).
• Offer to accompany the student-athletes to their initial appointment.
• Offer to make the appointment (or have the student-athlete make the appointment) while in your office.
• Emphasize the confidentiality of medical care and the referral process.

The following self-help strategies may improve mild depression symptoms:
• Reduce or eliminate the use of alcohol and drugs.
• Break large tasks into smaller ones; set realistic goals.
• Engage in regular, mild exercise.
• Eat regular and nutritious meals.
• Participate in activities that typically make you feel better.
• Let family, friends and coaches help you.
• Increase positive or optimistic thinking.
• Engage in regular and adequate sleep habits.

Table 1 DEPRESSIVE SIGNS AND SYMPTOMS

Individually might present:
• Decreased performance in school or sport.
• Noticeable restlessness.
• Significant weight loss or weight gain.
• Decrease or increase in appetite nearly every day (fluctuating?).

Individually might express:
• Indecisiveness.
• Feeling sad or unusually crying.
• Difficulty concentrating.
• Lack of or loss of interest or pleasure in activities that were once enjoyable (hanging out with friends, practice, school, sex).
• Depressed, sad or “empty” mood for most of the day and nearly every day.
• Recurrent thoughts of death or thoughts about suicide.
• Frequent feelings of worthlessness, low self-esteem, hopelessness, helplessness or inappropriate guilt.

Table 2 MANIC SIGNS AND SYMPTOMS

Individually might present:
• Abnormal or excessive elation.
• Unusual irritability.
• Markedly increased energy.
• Poor judgment.
• Inappropriate social behavior.
• Increased talking.

Individually might express:
• Racing thoughts.
• Increased sexual desire.
• Decreased need for sleep.
• Grandiose notions.
Using a simple tool such as this can help students and staff look for signs of depression.
Put a check mark by each sign that sounds like you:
☐ I am really sad most of the time.
☐ I don’t enjoy doing the things I’ve always enjoyed doing.
☐ I don’t sleep well at night and am very restless.
☐ I am always tired. I find it hard to get out of bed.
☐ I don’t feel like eating much.
☐ I feel like eating all the time.
☐ I have lots of aches and pains that don’t go away.
☐ I have little to no sexual energy.
☐ I find it hard to focus and am very forgetful.
☐ I am mad at everybody and everything.
☐ I feel upset and fearful, but can’t figure out why.
☐ I don’t feel like talking to people.
☐ I feel like there isn’t much point to living, nothing good is going to happen to me.
☐ I don’t like myself very much. I feel bad most of the time.
☐ I think about death a lot. I even think about how I might kill myself.

If you checked several boxes, call your doctor. Take the list to show the doctor. You may need to get a check-up and find out if you have depression.

References

SPECIAL POPULATIONS

Also Found on the NCAA Web site at:
NCAA.org/health-safety
In accordance with the recommendations of major medical organizations and pursuant to the requirements of federal law (in particular, the Rehabilitation Act of 1976 and The Americans With Disabilities Act), the NCAA encourages participation by student-athletes with physical or mental impairments in intercollegiate athletics and physical activities to the full extent of their interests and abilities. It is imperative that the university’s sports medicine personnel assess a student-athlete’s medical needs and specific limitations on an individualized basis so that needless restrictions will be avoided and medical precautions will be taken to minimize any enhanced risk of harm to the student-athlete or others from participation in the subject sport.

A student-athlete with impairment should be given an opportunity to participate in an intercollegiate sport if he or she has the requisite abilities and skills in spite of his or her impairment, with or without a reasonable accommodation. Medical exclusion of a student-athlete from an athletics program should occur only when a mental or physical impairment presents a significant risk of substantial harm to the health or safety of the student-athlete and/or other participants that cannot be eliminated or reduced by reasonable accommodations. Recent judicial decisions have upheld a university’s legal right to exclude a student-athlete from competition if the team physician has a reasonable medical basis for determining that athletic competition creates a significant risk of harm to the student-athlete or others. When student-athletes with impairments not otherwise qualified to participate in existing athletics programs are identified, every means should be explored by member institutions to provide suitable sport and recreational programs in the most appropriate, integrated settings possible to meet their interests and abilities.

Participation Considerations

Before allowing any student-athlete with an impairment to participate in an athletics program, it is recommended that an institution require joint approval from the physician most familiar with the student-athlete’s condition, the team physician, and an appropriate official of the institution as well as his or her parent(s) or guardian. The following factors should be considered on an individualized basis in determining whether he or she should participate in a particular sport:

1. Available published information regarding the medical risks of participation in the sport with the athlete’s mental or physical impairment;
2. The current health status of the student-athlete;
3. The physical demands of the sport and position(s) that the student-athlete will play;
4. Availability of acceptable protective equipment or measures to reduce effectively the risk of harm to the student-athlete or others; and
5. The ability of the student-athlete (and, in the case of a minor, the parents or guardian) to fully understand the material risks of athletic participation.

Organ Absence or Non-function

When the absence or non-function of a paired organ constitutes the impairment, the following specific issues need to be addressed with the student-athlete and his/her parents or guardian (in the case of a minor). The following factors should be considered:

1. The quality and function of the remaining organ;
2. The probability of injury to the remaining organ; and
Participation by the Student-Athlete with Impairment

3. The availability of current protective equipment and the likely effectiveness of such equipment to prevent injury to the remaining organ.

Medical Release

When a student-athlete with impairment is allowed to compete in the intercollegiate athletics program, it is recommended that a properly executed document of understanding and a waiver release the institution for any legal liability for injury or death arising out of the student-athlete’s participation with his or her mental or physical impairment medical condition. The following parties should sign this document: the student-athlete, his or her parents/guardians, the team physician and any consulting physician, a representative of the institution’s athletics department, and the institution’s legal counsel. This document evidences the student-athlete’s understanding of his or her medical condition and the potential risks of athletic participation, but it may not immunize the institution from legal liability for injury to the student-athlete.

References

Pregnancy Policies

Pregnancy places unique challenges on the student-athlete. Each member institution should have a policy clearly outlined to address the rights and responsibilities of the pregnant student-athlete. The policy should address:

• Where the student-athlete can receive confidential counseling;

• Where the student-athlete can access timely medical and obstetrical care;

• How the pregnancy may affect the student-athlete’s team standing and institutional grants-in-aid;

• That pregnancy should be treated as any other temporary health condition regarding receipt of institutional grants-in-aid; and

• That NCAA rules permit a one-year extension of the five-year period of eligibility for a female student-athlete for reasons of pregnancy.

Student-athletes should not be forced to terminate a pregnancy because of financial or psychological pressure or fear of losing their institutional grants-in-aid.

The team’s certified athletic trainer or team physician is often approached in confidence by the student-athlete. The sports medicine staff should be well-versed in the athletics department’s policies and be able to access the identified resources. The sports medicine staff should respect the student-athlete’s requests for confidentiality until such time when there is medical reason to withhold the student-athlete from competition.

Exercise In Pregnancy

Assessing the risk of intense, strenuous physical activity in pregnancy is difficult. There is some evidence that women who exercise during pregnancy have improved cardiovascular function, limited weight gain and fat retention, improved attitude and mental state, easier and less complicated labor, and enhanced postpartum recovery. There is no evidence that increased activity increases the risk of spontaneous abortion in uncomplicated pregnancies. The sports medicine staff should respect the student-athlete’s requests for confidentiality until such time when there is medical reason to withhold the student-athlete from competition.

The fetus may benefit from exercise during pregnancy in several ways, including an increased tolerance for the physiologic stresses of late pregnancy, labor and delivery.

The safety of participation in individual sports by a pregnant woman should be dictated by the movements and physical demands required to compete in that sport and the previous activity level of the individual. The American College of Sports Medicine discourages heavy weight lifting or similar activities that require straining or valsala.

Exercise in the supine position after the first trimester may cause venous obstruction and conditioning or training exercises in this position should be avoided.

Sports with increased incidences of bodily contact (basketball, ice hockey, field hockey, lacrosse, soccer, rugby) or falling (gymnastics, equestrian, downhill skiing) are generally considered higher risk after the first trimester because of the potential risk of abdominal trauma. The student-athlete’s ability to compete may also be compromised due to changes in physiologic capacity, and musculoskeletal issues unique to pregnancy.

There is also concern that in the setting of intense competition a
pregnant athlete will be less likely to respond to internal cues to moderate exercise and may feel pressure not to let down the team.

The American College of Obstetrics and Gynecology states that competitive athletes can remain active during pregnancy but need to modify their activity as medically indicated and require close supervision.

If a student-athlete chooses to compete while pregnant they should:

- Be made aware of the potential risks of their particular sport and exercise in general while pregnant;
- Be encouraged to discontinue exercise when feeling over-exerted or when any warning signs (Table I) are present;
- Follow the recommendations of their obstetrical provider in coordination with the team physician; and
- Take care to remain well-hydrated and to avoid over-heating.

After delivery or pregnancy termination, medical clearance is recommended to ensure the student-athlete’s safe return to athletics. (See Follow-up Examinations section of Guideline 1b.)

The physiologic changes of pregnancy persist four to six weeks postpartum, however, there have been no known maternal complications from resumption of training. Care should be taken to individualize return to practice and competition.

<table>
<thead>
<tr>
<th>Table No. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning Signs to Terminate Exercise While Pregnant</td>
</tr>
<tr>
<td>Vaginal Bleeding</td>
</tr>
<tr>
<td>Shortness of Breath Before Exercise</td>
</tr>
<tr>
<td>Dizziness</td>
</tr>
<tr>
<td>Headache</td>
</tr>
<tr>
<td>Chest Pain</td>
</tr>
<tr>
<td>Calf Pain or Swelling</td>
</tr>
<tr>
<td>Pre-term Labor</td>
</tr>
<tr>
<td>Decreased Fetal Movement</td>
</tr>
<tr>
<td>Amniotic Fluid Leakage</td>
</tr>
<tr>
<td>Muscle Weakness</td>
</tr>
</tbody>
</table>

References

Sickle cell trait is not in itself a disease. It is a descriptive term for a hereditary condition in which an individual has one normal gene for hemoglobin (A) and one abnormal gene for hemoglobin (S), giving the genetic type (AS). Sickle cell trait condition (AS) is not the same as sickle cell anemia disease (SS), in which two abnormal genes are present. Approximately eight to 10 percent of the U.S. black population has sickle cell trait, while less than one percent exhibit sickle cell anemia. Sickle cell trait is found in nonblack athletes and black athletes, although in a much lower frequency. It is present in athletes at all levels of competition, including professional and Olympic. Sickle cell trait is not a barrier to outstanding athletics performance.

In general, sickle cell trait is a benign condition that does not affect the longevity of the individual. Persons who carry only the sickle cell trait do not have the associated anemia. Two situations that have not been found to affect the morbidity, mortality or athletics performance of people with sickle cell trait are:

1. Hyposthenuria (inability to concentrate urine normally); and
2. Hematuria.

However, the sickle cell trait has been linked definitively to splenic infarction with cases apparently more frequent in nonblacks. This situation typically occurs at altitude (usually greater than 5,000 feet), although a case has been described near sea level. Signs and symptoms of a splenic infarction include sudden acute pain in the lower ribs, weakness and nausea. It appears that strenuous physical exertion after a recent arrival at altitude is a common theme. Although there are more than two million people in the United States with sickle cell trait, only a few cases of splenic infarction are reported each year.

It has been suggested that the sickle cell trait is linked to two other medical problems that may elicit health and performance concerns. These include:

1. Exercise-related rhabdomyolysis; and
2. Exercise-associated sudden death.

Several anecdotal cases of exercise-related rhabdomyolysis (fatal and nonfatal) in athletes with sickle cell trait have been reported. However, exercise-related rhabdomyolysis also has been reported in nonsickle cell trait athletes. At this time, no direct causal evidence has been shown and the relationship is unclear.

There is a controversy in the medical literature concerning whether sickle cell trait increases the risk of exercise-associated sudden death. One study from a large population of recruits undergoing military basic training indicated a possible association of increased sudden unexplained deaths (heat injuries, rhabdomyolysis and sudden cardiac arrhythmia) in black recruits with sickle cell trait. There have been no studies concerning athletes.

Acknowledging that no sports medicine body currently suggests any restrictions for the athlete with sickle cell trait, the NCAA Committee on Competitive Safeguards and Medical Aspects of Sports has determined that the following points be considered by athletics health-care providers:

1. Team physicians and athletic trainers should familiarize themselves with the medical literature concerning sickle cell trait;
2. Serious medical problems associated with the sickle cell trait are rare even during athletics competition. No unwarranted restrictions or limitations should
be placed on the student-athlete with sickle cell trait;

3. If screening is done, it should be done on a voluntary basis with the informed consent of the student-athlete and should be offered to all student-athletes, since sickle cell trait is found in both black and nonblack individuals. If a test is positive, the student-athlete should be offered genetics counseling for concerns such as family planning, and an explanation of a possibly remote and unclear risk involved with physical exertion and altitude. This consultation should be documented in the student-athlete’s medical record; and

4. All student-athletes, including those with known sickle cell trait, should be counseled to:
 a. Avoid dehydration and acclimatize gradually to heat and humidity;
 b. Condition carefully and gradually for several weeks before engaging in exhaustive exercise regimens;
 c. Acclimate to altitude over an appropriate amount of time; and
 d. Refrain from extreme exercise during acute illness, especially one involving fever.

References

EQUIPMENT

Also Found on the NCAA Web site at:
NCAA.org/health-safety
Rules governing mandatory equipment and equipment use vary by sport. Athletics personnel should be familiar with what equipment is mandatory by rule and what constitutes illegal equipment; how to wear mandatory equipment during the contest, and when to notify the coaching staff that the equipment has become illegal during competition. Athletics personnel involved in sports with established equipment standards should adhere to those standards.

The NOCSAE mark on a helmet or HECC seal on an ice hockey face mask indicates that the equipment has been tested by the manufacturer in accordance with NOCSAE or HECC test standards. By keeping a proper fit, by not modifying its design, and by reporting to the coach or equipment manager any need for its maintenance, the student-athlete also is complying with the purpose of the standard.

The following list of mandatory equipment and rules regarding protective equipment use is based on NCAA sports rules. The most updated information should be obtained from relevant NCAA sports committees.

<table>
<thead>
<tr>
<th>Sport</th>
<th>Mandatory Protective Equipment*</th>
<th>Rules Governing Special Protective Equipment</th>
</tr>
</thead>
</table>
| 1. Baseball | 1. A double ear-flap protective helmet while batting, on deck and running bases. Helmets must carry the NOCSAE mark.
2. All catchers must have a built-in or attachable throat guard on their masks.
3. All catchers are required to wear a protective helmet when fielding their position. | None |
| 2. Basketball | None | Elbow, hand, finger, wrist or forearm guards, casts or braces made of fiberglass, plaster, metal or any other nonpliable substance shall be prohibited. Pliable (flexible or easily bent) material covered on all exterior sides and edges with no less than 0.5-inch thickness of a slow-rebounding foam shall be used to immobilize and/or protect an injury. The prohibition of the use of hard-substance material |
Protective Equipment

<table>
<thead>
<tr>
<th>Sport</th>
<th>Mandatory Protective Equipment*</th>
<th>Rules Governing Special Protective Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basketball (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>does not apply to the upper arm, shoulder, thigh or lower leg if the material is padded so as not to create a hazard for other players. Equipment that could cut or cause an injury to another player is prohibited, without respect to whether the equipment is hard. Equipment that, in the referee’s judgment, is dangerous to other players, may not be worn.</td>
<td></td>
</tr>
<tr>
<td>3. Fencing</td>
<td>1. Masks with meshes (space between the wires) of maximum 2.1 mm and from wires with a minimum gauge of 1 mm diameter. 2. Gloves, of which the gauntlet must fully cover approximately half the forearm of the competitor’s sword arm. 3. Jacket or vest and metallic lames. 4. Ladies’ chest protectors made of metal or some other rigid material. 5. Underarm protector.</td>
<td></td>
</tr>
<tr>
<td>4. Field Hockey</td>
<td>1. The following equipment is permitted for use only by goalkeepers: body and wrap-around throat protectors, pads, kickers, gauntlet gloves, helmet incorporating fixed full-face protection and cover for the head, and elbow pads. 2. Mouthguards for all players including goalkeepers. 3. Wrap-around throat protector and helmet for player designated as a “kicking back.” In the event of a defensive penalty corner, the “kicking back” must also wear a chest protector and distinguishing jersey.</td>
<td>Players shall not wear anything that may be dangerous to other players. Players have the option of wearing soft headgear subject to game official approval.</td>
</tr>
</tbody>
</table>
Protective Equipment

Mandatory Protective Equipment*

1. Soft knee pads at least ½-inch thick must cover the knees and be covered by pants. No pads or protective equipment may be worn outside the pants.

2. Face masks and helmets with a secured four- or six-point chin strap. All players shall wear helmets that carry a warning label regarding the risk of injury and a manufacturer’s or reconditioner’s certification indicating satisfaction of NOCSAE test standards.

3. Shoulder pads, hip pads with tailbone protectors and thigh guards.

4. An intra-oral mouthpiece of any readily visible color (not white or transparent) with FDA-approved base materials (FDCS) that covers all upper teeth. It is recommended that the mouthpiece be properly fitted.

Rules Governing Special Protective Equipment

Illegal equipment includes the following:

1. Equipment worn by a player, including artificial limbs, that would endanger other players.

2. Hard, abrasive or unyielding substances on the hand, wrist, forearm or elbow of any player, unless covered on all exterior sides and edges with closed-cell, slow-recovery foam padding no less than ½-inch thick, or an alternate material of the same minimum thickness and similar physical properties. Hard or unyielding substances are permitted, if covered, only to protect an injury. Hand and arm protectors (covered casts or splints) are permitted only to protect a fracture or dislocation.

3. Thigh guards of any hard substances, unless all surfaces are covered with material such as closed-cell vinyl foam that is at least ½-inch thick on the outside surface and at least ¾-inch thick on the inside surface and the overlaps of the edges; shin guards not covered on both sides and all edges with closed-cell, slow-recovery foam padding at least ½-inch thick, or an alternate material of the same minimum thickness having similar physical properties; and therapeutic or preventive knee braces, unless worn under the pants and entirely covered from direct external exposure.
<table>
<thead>
<tr>
<th>Sport</th>
<th>Mandatory Protective Equipment*</th>
<th>Rules Governing Special Protective Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football (continued)</td>
<td>1. Helmet with chin straps securely fastened. It is recommended that the helmet meet HECC standards.</td>
<td>4. Projection of metal or other hard substance from a player’s person or clothing.</td>
</tr>
<tr>
<td>6. Gymnastics</td>
<td>2. An intra-oral mouthpiece that covers all the upper teeth.</td>
<td>None</td>
</tr>
<tr>
<td>7. Ice Hockey</td>
<td>3. Face masks that have met the standards established by the HECC-ASTM F 513-89 Eye and Face Protective Equipment for Hockey Players Standard.</td>
<td>1. The use of pads or protectors made of metal or any other material likely to cause injury to a player is prohibited.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The use of any protective equipment that is not injurious to the player wearing it or other players is recommended.</td>
</tr>
<tr>
<td>8. Women’s Lacrosse</td>
<td>1. The goalkeeper must wear a helmet with face mask, separate throat protector, a mouth piece, a chest protector.</td>
<td>Protective devices necessitated on genuine medical grounds must be approved by the umpires. Close-fitting gloves, nose guards, eye guards and soft headgear may be worn by all players. These devices must create no danger to other players.</td>
</tr>
<tr>
<td></td>
<td>2. All field players shall wear properly an intra-oral mouthpiece that covers all upper teeth.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. All field players shall wear protective eyewear that meet current ASTM lacrosse standards (effective January 1, 2005).</td>
<td></td>
</tr>
<tr>
<td>9. Men’s Lacrosse</td>
<td>1. Protective helmet that carries the NOCSAE mark, equipped with face mask and chin pad, with a cupped four-point chin strap (high-point hookup).</td>
<td>1. A player shall not wear any equipment that, in the opinion of the official, endangers the individual or others.</td>
</tr>
<tr>
<td></td>
<td>2. Intra-oral mouthpiece that covers all the upper teeth and is yellow or any other highly visible color.</td>
<td>2. The special equipment worn by the goalkeeper shall not exceed standard equipment for a field-player, plus standard goalkeeper equipment, which includes shin-guards, chest protectors and throat protectors.</td>
</tr>
<tr>
<td></td>
<td>3. Protective gloves, shoulder pads, shoes and jerseys. Shoulder pads shall not be altered.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Throat protector and chest protector are required for the goalie.</td>
<td></td>
</tr>
<tr>
<td>Sport</td>
<td>Mandatory Protective Equipment*</td>
<td>Rules Governing Special Protective Equipment</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>10. Rifle</td>
<td>Shooters and range personnel in the immediate vicinity of the range required to wear hearing protection during smallbore. Shooters urged to wear shatterproof eye protection.</td>
<td>None</td>
</tr>
</tbody>
</table>
| 11. Soccer | Players shall wear shin guards under the stockings in the manner intended, without exception. The shin guards shall be professionally manufactured, age and size appropriate and not altered to decrease protection. The shin guards must meet NOCSAE standards. | 1. A player shall not wear anything that is dangerous to another player.
2. Knee braces are permissible provided no metal is exposed.
3. Casts are permitted if covered and not considered dangerous.
4. A player shall not wear any jewelry of any type whatsoever. Exception: Medical alert bracelets or neck laces may be worn but must be taped to the body. |
| 12. Skiing | Helmets manufactured for ski racing are required in all alpine events and event training. | None |
| 13. Softball | 1. Catchers must wear foot-to-knee shin guards; NOCSAE approved protective helmet with face mask and built-in or attachable throat guard; and chest protector.
2. A NOCSAE approved double-ear flap protective helmet must be worn by players while batting, running the bases or warming-up in the on-deck circle. | Casts, braces, splints and protheses must be well-padded to protect both the player and opponent and must be neutral in color. If worn by pitcher, cannot be distracting on nonpitching arm. If worn on pitching arm, may not cause safety risk or unfair competitive advantage. |
<p>| 14. Swimming and Diving | None | None |</p>
<table>
<thead>
<tr>
<th>Sport</th>
<th>Mandatory Protective Equipment*</th>
<th>Rules Governing Special Protective Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Track and Field</td>
<td>None</td>
<td>1. No taping of any part of the hand, thumb or fingers will be permitted in the discus and javelin throws, and the shot put, except to cover or protect an open wound. In the hammer throw, taping of individual fingers is permissible. Any taping must be shown to the head event judge before the event starts.</td>
</tr>
<tr>
<td>16. Volleyball</td>
<td>None</td>
<td>2. In the pole vault, the use of a forearm cover to prevent injuries is permissible.</td>
</tr>
<tr>
<td>17. Water Polo</td>
<td>Cap with protective ear guards.</td>
<td>1. It is forbidden to wear any object that may cause an injury or give an artificial advantage to the player, including but not limited to headgear, jewelry and unsafe casts or braces. Religious medallions or medical identifications must be removed from chains and taped or sewn under the uniform.</td>
</tr>
<tr>
<td>18. Wrestling</td>
<td>Protective ear guard.</td>
<td>2. All jewelry must be removed. Earrings must be removed. Taping of earrings or other jewelry is not permitted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Hard splints or other potentially dangerous protective devices worn on the arms or hands are prohibited, unless padded on all sides with at least 1/2-inch thick of slow rebounding foam.</td>
</tr>
</tbody>
</table>
Eye injuries in sports are relatively frequent, sometimes catastrophic, and almost completely preventable with the use of appropriate protective devices. A sports eye protector may be a spectacle, a goggle, a face-supported protector, or a protector attached to a helmet. It comes with or without lenses, is capable of being held securely in place, and may protect the face as well as the eyes. Some forms can be worn over regular glasses. Sports eye protectors are specially designed, fracture-resistant units that comply with the American Society for Testing and Materials (ASTM), or the National Operating Committee on Standards for Athletic Equipment (NOCSAE) standards for specific sports.

Approximately one-third of all persons participating in sports require corrective lenses to achieve the visual acuity necessary for proper and safe execution of their particular sports activity. Athletes who need corrective eyewear for participation should use lenses and frames that meet the appropriate safety standards. At this time polycarbonate plastic is the only clear lens material that has been tested for sports and is recommended for all sports with the potential for impact. Other impact resistant lens materials may be available in the near future. Contact lenses are not capable of protecting the eye from direct blows. Student-athletes who wear contact lenses for corrective vision should wear appropriate sports safety eyewear for ocular protection.

The American Academy of Ophthalmology recommends that head, face and eye protection should be certified by either the Protective Eyewear Certification Council (PECC — www.protecteyes.org/), the Hockey Equipment Certification Council (HECC — www.hecc-hockey.org/), the National Operating Committee on Standards for Athletic Equipment (NOCSAE — www.nocsae.org/), or the Canadian Standards Association (CSA — www.csa-international.org/). The cited Web sites will have more specific information on these standards. Certification ensures that the protective device has been properly tested to current standards.

Protective eyewear should be considered for all sports that have a projectile object (ball/stick) whose size and/or speed could potentially cause ocular damage. Eye protection is especially important for functionally one-eyed sports participants (whose best corrected vision in their weaker eye is 20/40 or worse). Eye protection devices are designed to significantly reduce the risk of injury, but can never provide a guarantee against such injuries.

Summary

1. Appropriate for eye protection in sports:
 a. Safety sports eyewear that conforms to the requirements of the American Society for Testing and Materials (ASTM) Standard F803 for selected sports (racket sports, basketball, women’s lacrosse, and field hockey).
 b. Sports eyewear that is attached to a helmet or is designed for sports for which ASTM F803 eyewear alone provides insufficient protection. Those for which there are standard specifications include: skiing (ASTM 659), and ice hockey (ASTM F513). Other protectors with NOCSAE standards are available for football and men’s lacrosse.
2. Not appropriate for eye protection in sports:

a. Streetwear (fashion) spectacles that conform to the requirements of American National Standards Institute (ANSI) Standard Z80.3.

b. Safety eyewear that conforms to the requirements of ANSI Z87.1, mandated by OSHA for industrial and educational safety eyewear.

References

The NCAA Committee on Competitive Safeguards and Medical Aspects of Sports acknowledges the significant input of Dr. Jack Winters, past president of the Academy of Sports Dentistry, in the revision of this guideline.

The NCAA has mandatory equipment rules, including the use of mouthguards for selective sports. Various studies of “properly fitted mouthguards” indicate that they may reduce dental injuries when blows to the jaws or head are received.

The American Dental Association has urged the mandatory use of mouthguards for those engaged in athletics activities that involve body contact and endorsed their use “in sporting activities in which a significant risk of oral injury may occur.” It is important when considering the optimum protection for an athlete that a thorough medical history be taken and the demands of his or her position and sporting activity be considered.

Specific objectives for the use of “properly fitted mouthguards” as protective devices in sports are as follows:

1. “Properly fitted mouthguards” could reduce the potential chipping of tooth enamel surfaces and reduce fractures of teeth, roots or bones.

2. “Properly fitted mouthguards” could protect the lip and cheek tissues from being impacted and lacerated against tooth edges.

3. “Properly fitted mouthguards” could reduce the incidence of a fractured jaw caused by a blow delivered to the chin or head.

4. “Properly fitted mouthguards” could provide protection to toothless spaces, so support is given to the missing dentition of the student-athlete.

Stock, mouth formed and custom-fitted are three types of mouthguards recognized by the American Dental Association. All need to be properly fitted for maximum protection. Student-athletes should be advised as to which “properly fitted mouthguard” is best for them and how it is best maintained to assure the maximum fit and protection for daily practices and game-day wear. Medical staff personnel should regularly oversee and observe the student-athletes and the “properly fitted mouthguards.”

In order to realize fully the benefits of wearing a mouth guard, the coach, student-athlete and medical staff need to be educated about the protective functions of a mouth guard and the game rules regarding mouth guard use must be enforced.
Mouth Guards

<table>
<thead>
<tr>
<th>Sport</th>
<th>Position</th>
<th>Intra-oral Mouthguard</th>
<th>Color</th>
<th>Covers All Upper Teeth</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Hockey</td>
<td>Field</td>
<td>Mandatory (NCAA Mod. 8.1.b); strongly recommended for goalkeepers</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Regular Season Competition and NCAA Championships</td>
</tr>
<tr>
<td>Football</td>
<td>All</td>
<td>Mandatory (NCAA 1.4.4.d)</td>
<td>Readily Visible Color</td>
<td>Yes</td>
<td>Regular Season Competition, Postseason Competition and NCAA Championships</td>
</tr>
<tr>
<td>Ice Hockey</td>
<td>All</td>
<td>Mandatory (NCAA 3.2)</td>
<td>Recommended</td>
<td>Covers all the remaining teeth of one jaw</td>
<td>Regular Season Competition and NCAA Championships</td>
</tr>
<tr>
<td>Women's Lacrosse</td>
<td>All</td>
<td>Mandatory (NCAA 2.8)</td>
<td>Not specified</td>
<td>Yes</td>
<td>Regular Season Competition and NCAA Championships</td>
</tr>
<tr>
<td>Men's Lacrosse</td>
<td>All</td>
<td>Mandatory (NCAA 1.20)</td>
<td>Yellow or any other visible color</td>
<td>Yes</td>
<td>Regular Season Competition and NCAA Championships</td>
</tr>
</tbody>
</table>

GUIDELINE 4d
Use of the Head as a Weapon in Football and Other Contact Sports

January 1976 • Revised June 2002

Head and neck injuries causing death, brain damage or paralysis occur each year in football and other sports. While the number of these injuries each year is relatively small, they are devastating occurrences that have a great impact. Most of these catastrophic injuries result from initiating contact with the head. The injuries may not be prevented due to the forces encountered during collisions, but they can be minimized by helmet manufacturers, coaches, players and officials complying with accepted safety standards and playing rules.

The American Football Coaches Association, emphasizing that the helmet is for the protection of the wearer and should not be used as a weapon, addresses this point as follows:

1. The helmet shall not be used as the brunt of contact in the teaching of blocking or tackling;
2. Self-propelled mechanical apparatuses shall not be used in the teaching of blocking and tackling; and
3. Greater emphasis by players, coaches and officials should be placed on eliminating spearing.

Proper training in tackling and blocking techniques, including a “see what you hit approach”, constitutes an important means of minimizing the possibility of catastrophic injury. Using the helmet as an injury-inflicting instrument is illegal, and should be strongly discouraged by coaches and game officials. This concern is not only in football, but also in other contact sports where helmets are used, e.g. ice hockey and men’s lacrosse.

Football and all contact sports should be concerned with the prevention of catastrophic head injuries. The rules against butting, ramming and spearing with the helmet are for the protection of the helmeted player as well as the opponent. A player who does not comply with these rules in any sport is a candidate for a catastrophic injury.

References

Several sports, including football, men's lacrosse and ice hockey, require wearing tight-fitting, similarly constructed helmets. The following guidelines, while focused on football, are applicable to periodic evaluation, fitting and removal of protective helmets worn in any sport. These guidelines represent minimal standards of care that are designed to assist physicians, coaches, athletic trainers, paramedics, EMTs and hospital personnel who care for student-athletes.

Medical coverage of interscholastic and intercollegiate teams entails many routine preventive and acute health-care duties for dedicated practicing professionals; however, an occasional, serious, on-the-field, life-threatening head and/or neck injury poses a difficult challenge. It is incumbent upon those individuals assigned to provide medical coverage to be prepared to handle each situation efficiently and expertly.

Proper on-the-field management of head and neck injuries is essential to minimize sequelae, expedite emergency measures and to prepare for transportation. The action of those in attendance must not compound the problem. For this reason, clear communication between the medical staff and emergency-transportation personnel should be maintained.

It is important that those involved in the medical management of teams engaged in collision and contact sports, and the student-athlete be knowledgeable about the helmet. The student-athlete should be instructed in the fitting, care and use of the helmet. Helmet manufacturer guidelines should be reviewed and followed for proper fitting and care techniques.

The resilient plastic shell is shaped spherically to deflect impacts. Interior suspension pads are designed to match the skull contour to ensure a snug crown fit. Various rigid and removable jaw and brow pads, along with the chin strap, help to hold the sides of the helmet firmly against the mandible and the forehead. When in place, the front edge of the helmet should be positioned about a finger's breadth above the eyebrows. Pressure on the helmet crown should be dissipated through the interior suspension padding over the top of the head.

The helmet should fit snugly without dependence on the chin strap. The helmet should not twist or slide when an examiner grasps the face mask and attempts to rock or turn the helmet with the wearer resisting the movement.

With a properly fitted helmet, the top of the head is separated from the helmet shell by a uniform, functional, shock-absorbing support lining. Daily evaluation of this support mechanism, including cheek and brow pads, for placement and resiliency should be taught to the student-athlete. Helmets that require air inflation should be inflated and inspected daily by those assigned to equipment care. Helmet shells should be examined weekly for cracking and be inspected closely again if the face mask has been bent out of shape. All helmets need to be reconditioned and the attachments of the mask replaced on a yearly basis.

Although the helmet is designed for a stable fit for protection during play, removal of the helmet by others is relatively difficult. In the case of a head or neck injury, jostling and pulling during removal presents high potential for further trauma.

Unless there are special circumstances such as respiratory distress coupled with an inability to access the airway, the helmet should never be removed during the pre-hospital care of the student-athlete with a potential head/neck injury unless:

1. The helmet does not hold the head securely, such that immobilization of the helmet does not immobilize the head;
Guidelines for Helmet Fitting and Removal in Athletics

2. The design of the sport helmet is such that even after removal of the facemask, the airway cannot be controlled or ventilation provided;

3. After a reasonable period of time, the facemask cannot be removed; or

4. The helmet prevents immobilization for transportation in an appropriate position.

When such helmet removal is necessary in any setting, it should be performed only by personnel trained in this procedure.

Ordinarily, it is not necessary to remove the helmet on the field to evaluate the scalp. Also, the helmet can be left in place when evaluating an unconscious student-athlete, an individual who demonstrates transient or persistent neurological findings in his/her extremities, or the student-athlete who complains of continuous or transient neck pain.

Before the injured student-athlete is moved, airway, breathing and circulation (ABCs) should be evaluated by looking, listening and palpation. To monitor breathing, care for facial injury, or before transport regardless of current respiratory status, the facemask should be removed by cutting or unscrewing the loops that attach the mask to the helmet. These loops may be difficult to cut, necessitating the use of PVC pipe cutters, garden shears or a screwdriver. Those involved in the pre-hospital care of the injured student-athlete should have readily available proper tools for easy facemask removal and should frequently practice removal techniques for facemasks and helmets. It should be noted that cold weather and old loops may make cutting difficult. The chin strap can be left in place unless resuscitative efforts are necessary. For resuscitation, the mouthpiece needs to be manually removed.

Once the ABCs are stabilized, transportation to an emergency facility should be conducted with the head secure in the helmet and the neck immobilized by strapping, taping and/or using lightweight bolsters on a spine board. When moving an athlete to the spine board, the head and trunk should be moved as a unit, using the lift/slide maneuver or a log roll technique.

At the emergency facility, satisfactory initial skull and cervical X-rays usually can be obtained with the helmet in place. Should removal of the helmet be needed to initiate treatment or to obtain special X-rays, the following protocol should be considered:

- With the head, neck and helmet manually stabilized, the chin strap can be cut.
- While maintaining stability, the cheek pads can be removed by slipping the flat blade of a screwdriver or bandage scissor under the pad snaps and above the inner surface of the shell.
- If an air cell-padding system is present, it can be deflated by releasing the air at the external port with an inflation needle or large gauge hypodermic needle.
- By rotating the helmet slightly forward, it should now slide off the occiput. If the helmet does not move with this action, slight traction can be applied to the helmet as it is carefully rocked anteriorly and posteriorly, with great care being taken not to move the head/neck unit.
- The helmet should not be spread apart by the earholes, as this maneuver only serves to tighten the helmet on the forehead and on the occipital regions.
- All individuals participating in this important maneuver must proceed with caution and coordinate every move.

If the injured student-athlete, after being rehabilitated fully, is allowed to participate in the sport again, refitting his/her helmet is mandatory. Re-education about helmet use as protection should be conducted. Using the helmet as an offensive, injury-inflicting instrument should be discouraged.
The NCAA recognizes that the coaches and student-athletes in selected sports use the trampoline and minitramp for developing skills. The apparent safety record accompanying such use has been good, but the use of the trampoline can be dangerous. Therefore, these guidelines should be followed in those training activities in which student-athletes use the trampoline:

1. Trampolines should be supervised by persons with competence in the use of the trampoline for developing athletics skills. This implies that:

 a. Fellow coaches, student-athletes, managers, etc., are trained in the principles and techniques of spotting with the overhead harness, “bungee system” and/or hand spotting on the trampoline;

 b. New skills involving somersaults should be learned while wearing an overhead safety harness. (Exception: Use of the overhead system is not recommended for low-level salto activities such as saltos from the knees or back.) Those persons controlling the safety harness should have the necessary strength, weight and training for that responsibility;

 c. Skills being encouraged should be commensurate with the readiness of the student-athlete, and direct observation should confirm that the student-athlete is not exceeding his or her readiness; and

 d. Spotters are aware of the particular skill or routine being practiced and are in an appropriate position to spot potential errors. Accurate communication is important to the successful use of these techniques.

2. Potential users of the trampoline should be taught proper procedures for folding, unfolding, transporting, storing and locking the trampoline.

3. The trampoline should be erected in accordance with manufacturer’s instructions. It should be inspected regularly and maintained according to established standards. All inspection reports, including the date of inspection and name of inspector, should be kept on file.

Minitramp

The minitramp, while different in nature and purpose from the trampoline, shares its association with risk of spinal cord injury from poorly executed and/or spotted tricks. Like the trampoline, the minitramp requires competent instruction and supervision, spotters trained for that purpose (spotting somersaults on the minitramp differs from the trampoline because of the running action preceding the somersault), emphasis on the danger of somersaults and dive rolls, security against unsupervised use, proper erection and maintenance of the apparatus, a planned procedure for emergency care should an accident occur, and documentation of participation and any accidents that occur. In addition, no single or multiple somersault should be attempted unless:

1. The student-athlete has demonstrated adequate progression of skill before attempting any somersault (i.e., on the trampoline with a safety harness, off a diving board into a swimming pool or tumbling with appropriate spotting);

2. One or more competent spotters who know the skill being attempted are in position and are physically capable of spotting an improper execution;

3. The minitramp is secured reasonably or braced to prevent slipping at the time of execution in
accordance with recommendations in the USA Gymnastics Safety Handbook; and

4. A mat is used that is sufficiently wide and long to prevent the performer from landing on the mat’s edge and to provide proper footing for the spotter(s).

References

5. USA Gymnastics: USA Gymnastics Safety Handbook, 1994. (201 S. Capitol St., Ste. 300, Indianapolis, IN 46225)
APPENDIXES

Also Found on the NCAA Web site at:
NCAA.org/health-safety
This chart should be used as a quick reference for NCAA legislation involving health and safety issues that appears in the 2007-08 NCAA Divisions I, II and III Manuals. The comment section does not capture the full scope of the legislation; users are encouraged to review the full bylaw in the appropriate divisional manual. Because of the dynamic nature of the NCAA legislative process, the most current information on these and any new legislation should be obtained through the institution’s athletics department compliance staff.

Regulations Involving Health and Safety Issues

<table>
<thead>
<tr>
<th>Topic</th>
<th>Issue</th>
<th>NCAA Bylaw Cite</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Banned Drug Classes</td>
<td>31.2.3.4</td>
<td></td>
<td>Lists all drug classes currently prohibited by the NCAA.</td>
</tr>
<tr>
<td>Drugs and Procedures Subject to Restrictions</td>
<td>31.2.3.4.1</td>
<td></td>
<td>List of drugs and procedures that are restricted.</td>
</tr>
<tr>
<td>Effect on Eligibility</td>
<td>14.1.1.1</td>
<td></td>
<td>A positive test for use of a banned (performance enhancing or “street”) substance results in loss of eligibility.</td>
</tr>
<tr>
<td>Effect on Championship Eligibility</td>
<td>18.4.1.5</td>
<td></td>
<td>A positive test for a banned (performance enhancing or “street”) substance results in loss of eligibility, including eligibility for participation in postseason competition.</td>
</tr>
<tr>
<td>Transfer While Ineligible Due to Positive Drug Test</td>
<td>13.1.1.3.5, 13.1.1.2.4, 13.1.1.2.5 (Div. I, II, III)</td>
<td></td>
<td>Institution at which student-athlete tested positive for use of a banned substance must report the test result to the institution to which the student-athlete is transferring.</td>
</tr>
<tr>
<td>Knowledge of Use of Banned Drugs</td>
<td>10.2</td>
<td></td>
<td>Athletics department staff members or others employed by intercollegiate athletics department must report a student-athlete’s use of banned substance.</td>
</tr>
<tr>
<td>Banned Drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banned Drugs and Drug-Testing Methods</td>
<td>18.4.1.5.2</td>
<td></td>
<td>NCAA Executive Committee is charged with developing a list of banned substances and approving all drug-testing procedures.</td>
</tr>
<tr>
<td>Consent Form: Content and Purpose</td>
<td>14.1.4.1</td>
<td></td>
<td>Consent must be signed before competition or practice. Failure to sign consent results in loss of eligibility.</td>
</tr>
</tbody>
</table>
NCAA Legislation Involving Health and Safety Issues

<table>
<thead>
<tr>
<th>Drug Testing</th>
<th>Consent Form: Administration</th>
<th>Institution must administer consent form to all student-athletes each academic year at the time the intercollegiate squads report for practice. At this time, institutions must also distribute to student-athletes the official list of banned substances.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consent Form: Exception, 14-Day Grace Period (Div. I only)</td>
<td>14.1.4.3</td>
<td>Student-athletes who are trying out must sign the form within 14 days of the first athletics-related activity or before they compete, whichever occurs first.</td>
</tr>
<tr>
<td>Effect of Non-NCAA Athletics Organization’s Positive Drug Test</td>
<td>18.4.1.5.3</td>
<td>Executive Committee to develop method of testing student-athletes who previously tested positive to a test administered by a non-NCAA athletics organization.</td>
</tr>
<tr>
<td>Failure To Properly Administer Drug-Testing Consent Form (Div. I and Div. II only)</td>
<td>30.5.1.1</td>
<td>Failure to properly administer drug-testing consent form is considered an institutional violation.</td>
</tr>
<tr>
<td>Drug Rehabilitation Program Expenses</td>
<td>16.4.1 (Div. I and Div. II), 16.4 (Div. III)</td>
<td>Permissible for institution to cover the costs of a student-athlete’s drug rehabilitation program.</td>
</tr>
<tr>
<td>Travel To and From Drug Rehabilitation Program</td>
<td>16.12.1</td>
<td>Permissible to file a waiver under Bylaw 16.12.1 to cover costs associated with a drug rehabilitation program.</td>
</tr>
<tr>
<td>Permissible Supplements</td>
<td>16.5.2(h) (Div. I), 16.5.1(h) (Div. II)</td>
<td>Institution may provide only non-muscle building nutritional supplements. See Bylaw for details.</td>
</tr>
<tr>
<td>Impermissible Supplements</td>
<td>31.2.3.4</td>
<td>See list of banned substances for those supplements not considered in compliance with Bylaw 16.5.2(h) (Div. I) or Bylaw 16.5.1(h) (Div. II).</td>
</tr>
</tbody>
</table>
Tobacco Use

| Restricted Advertising and Sponsorship Activities | 31.1.14 (Div. I), 31.1.12 (Div. II and Div. III) | No tobacco advertisements in, or sponsorship of NCAA Championships or regular season events. |
| Tobacco Use at Member Institution | 11.1.5, 17.1.8 (Div. I and Div. II), 17.1.10 (Div. III) | Use of tobacco products is prohibited by all game personnel and all student-athletes in all sports during practice and competition. |

Medical Expenses

Permissible Medical Expenses	16.4.1 (Div. I and Div. II), 16.4 (Div. III)	Permissible medical expenses are outlined. If expense is not on the list, refer to Bylaw 16.12.1 for waiver procedure.
Eating Disorders (Div. I and Div. II only)	16.4.1	Institution may cover expenses of counseling related to the treatment of eating disorders.
Transportation for Medical Treatment (Div. I and Div. II only)	16.4.1	Institution may cover or provide transportation to and from medical appointments.
Summer Conditioning - Football and Basketball (Div. I only)	13.2.8	Institution may finance medical expenses for a prospect who sustains an injury while participating in nonmandatory summer conditioning activities that are conducted by an institution’s strength and conditioning coach with department-wide duties.

Medical Waivers

| Hardship Waiver | 14.2.4 (Div. I), 14.2.5 (Div. II and Div. III) | Under certain circumstances, a student-athlete may be awarded an additional season of competition to compensate for a season that was not completed due to incapacitating injury or illness. |
| Five-Year/10-Semester Rule Waiver | 30.6.1 | Under certain circumstances, a student-athlete may be awarded an additional year of eligibility if he or she was unable to participate in intercollegiate athletics due to incapacitating physical or mental circumstances. |

Medical Records and Consent Forms

| HIPAA/Buckley Amendment Consent Forms | 3.2.4.9, 14.1.6, 30.12 (Div. I), 3.2.4.7 | The authorization/consent form shall be administered individually to each student-athlete by the athletics director or the athletics director’s designee before the student-athlete’s participation in intercollegiate athletics. |
Student-Athlete Welfare and Safety

<table>
<thead>
<tr>
<th>Topic</th>
<th>Bylaw Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Restrictions on Athletics-Related Activities</td>
<td>17.1.6</td>
<td>All NCAA sports are subject to the time limitations in Bylaw 17.</td>
</tr>
<tr>
<td>Daily/Weekly Hour Limitation – Inside Playing Season</td>
<td>17.1.6.1</td>
<td>During the playing season, a student-athlete cannot engage in more than 20 hours of athletics-related activity (see Bylaw 17.02.1) per week, with not more than four hours of such activity in any one day.</td>
</tr>
<tr>
<td>Weekly Hour Limitations – Outside Playing Season</td>
<td>17.1.6.2</td>
<td>Outside of the playing season, student-athletes cannot engage in more than eight hours of conditioning activities per week.</td>
</tr>
<tr>
<td>Skill Instruction Exception</td>
<td>17.1.6.2.2</td>
<td>Outside of the playing season, two of the student-athlete's eight hours of conditioning activity may be skill-related instruction with coaching staff.</td>
</tr>
<tr>
<td>Required Day Off – Playing Season</td>
<td>17.1.6.4</td>
<td>During the playing season, each student-athlete must be provided with one day per week on which no athletics-related activities are scheduled.</td>
</tr>
<tr>
<td>Required Days Off – Outside Playing Season</td>
<td>17.1.5.5</td>
<td>Outside the playing season, each student-athlete must be provided with two days per week on which no athletics-related activities are scheduled.</td>
</tr>
<tr>
<td>Voluntary Summer Conditioning (Div. I only)</td>
<td>13.12.3.9, 13.12.3.8</td>
<td>Prospects, who signed an NLI or received a written offer of admission to the institution, may engage in voluntary summer workouts conducted by an institution’s strength and conditioning coach with department-wide duties.</td>
</tr>
<tr>
<td>Discretionary Time (Div. I only)</td>
<td>17.02.14</td>
<td>Student-athletes may only participate in athletics activities at their initiative during discretionary time.</td>
</tr>
</tbody>
</table>

NCAA Legislation Involving Health and Safety Issues

14.1.5, 30.12 (Div. II); 3.2.4.7, 14.1.6, 30.12 (Div. III) each academic year. Signing the authorization/consent shall be voluntary and is not required by the student-athlete’s institution for medical treatment, payment for treatment, enrollment in a health plan or for any benefits (if applicable) and is not required for the student-athlete to be eligible to participate. Any signed authorization/consent forms shall be kept on file by the director of athletics.
NCAA Legislation Involving Health and Safety Issues

<table>
<thead>
<tr>
<th>Student-Athlete Welfare and Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Medical Examinations</td>
</tr>
<tr>
<td>Five-Day Acclimatization Period – Football</td>
</tr>
<tr>
<td>Preseason Practice Activities – Football</td>
</tr>
<tr>
<td>Out-of-Season Athletics-Related Football Activities</td>
</tr>
<tr>
<td>Sport-specific Safety Exceptions (Archery; Equestrian; Fencing; Gymnastics; Rifle; Women's Rowing; Skiing; Swimming; Synchronized Swimming; Track and Field; Water Polo; and Wrestling.) (Div. I and Div. II only)</td>
</tr>
<tr>
<td>Playing Rules Oversight Panel</td>
</tr>
</tbody>
</table>
The NCAA Injury Surveillance System (ISS) was developed in 1982 to provide current and reliable data on injury trends in intercollegiate athletics. Injury data are collected yearly from a sample of NCAA member institutions, and the resulting data summaries are reviewed by the NCAA Committee on Competitive Safeguards and Medical Aspects of Sports. The committee’s goal continues to be to reduce injury rates through suggested changes in rules, protective equipment or coaching techniques, based on data provided by the ISS.

Sampling

Participation in the ISS is voluntary and limited to NCAA member institutions. ISS participation is available to the population of institutions sponsoring a given sport. Schools qualifying for inclusion in the final ISS sample are selected from the total participating schools for each ISS sport, with the goal of a minimum 10 percent representation of all three NCAA divisions. A school is selected as qualifying for the sample if they meet the minimum standards for data collection set forth by the ISS staff. For a more detailed explanation of ISS sampling methodology, see: National Collegiate Athletic Association Injury Surveillance Summary for 15 Sports, 1988-1989 Through 2003-2004. J Athl Train. 2007;42(2).

It is important to recognize that this system does not identify every injury that occurs at NCAA institutions in a particular sport. Rather, the emphasis is collecting all injuries and exposures from schools that voluntarily participate in the ISS. The ISS attempts to balance the dual needs of maintaining a reasonably representative cross-section of NCAA institutions while accommodating the needs of the voluntary participants.

Injuries

A reportable injury in the ISS is defined as one that:
1. Occurs as a result of participation in an organized intercollegiate practice or competition;
2. Requires medical attention by a team athletic trainer or physician; and
3. Results in restriction of the student-athlete’s participation or performance for one or more days beyond the day of injury.

Exposures

An athlete exposure (A-E), the unit of risk in the ISS, is defined as one athlete participating in one practice or competition in which he or she is exposed to the possibility of athletics injury.

Injury Rate

An injury rate is simply a ratio of the number of injuries in a particular category to the number of athlete exposures in that category. In the ISS, this value is expressed as injuries per 1,000 athlete exposures.

All Sports Figures

The following figures outline selected information from the 16 sports currently monitored by the ISS.

Figure Nos. 1 and 2 compare the practice and competition injury rates across 16 sports without regard to severity. Comparisons of injury rates between sports are difficult because each sport has its own unique schedule and activities. If such comparisons are necessary, it may be best to use the game data for which the intensity variable is most consistent.

Figure Nos. 3 through 6 examine two measures of severity found in the ISS — time loss and injuries that required surgery. These combined practice and game data are presented to assist in decisions regarding appropriate medical coverage for a sport; however, each severity category has some limitations that should be considered.

1. Time loss—Figure Nos. 3 through 5 evaluate the rate of report-
ed injuries that caused restricted or loss of participation of seven days or more. Limitations to this type of severity evaluation include:

a. An injury that restricts participation in one sport may not restrict participation in another sport; and

b. Injuries that occur at the end of a season can only be estimated with regard to time loss.

2. Injuries that require surgery—Figure Nos. 3, 4 and 6 evaluate the rate of reported injuries that required either immediate or postseason surgery. Limitations to this severity evaluation include:

a. The changing nature of surgical techniques and how they are applied;

b. The assumption that all sports had access to the same quality of medical evaluation; and

c. Injuries can occur that may be categorized as severe, such as concussions, that may not require surgery.

Any questions regarding the ISS or its data reports should be directed to: David Klossner, Associate Director of Education Services, NCAA, P.O. Box 6222, Indianapolis, Indiana 46206-6222 (317/917-6222).
Figure 1 represents the average competition (black) and practice (orange) injury rates (expressed as injuries per 1,000 athlete-exposures) for all sports analyzed in the ISS for the 2004-05, 2005-06 and 2006-07 seasons.

*Two-season average.
Figure 2 represents the average percentage of all injuries that occurred in practices and in competition in the 2004-05, 2005-06 and 2006-07 seasons. The relatively few injuries that occurred in the weight room were not included in the practice and competition percentages. It should be noted that these calculations are based only on the absolute number of injuries and do not take exposures into consideration.

*Two-season average.
Figure 3 represents the average overall competition injury rate (black), the game rate of injuries that caused reduced or missed participation for seven or more days (orange) and the game rate of reported injuries that required surgery (light orange). The rates are expressed as injuries per 1,000 athlete-exposures for all sports analyzed in the ISS for the 2004-05, 2005-06 and 2006-07 seasons.

*Two-season average.
Figure 4 represents the average overall practice injury rate (black), the practice rate of injuries that caused reduced or missed participation for seven or more days (orange) and the practice rate of reported injuries that required surgery (light orange). The rates are expressed as injuries per 1,000 athlete-exposures for all sports analyzed in the ISS for the 2004-05, 2005-06 and 2006-07 seasons.

*Two-season average.
Figure 5 represents the average rate of injuries that caused reduced or missed participation for seven or more days, suffered either in competition (black) or in practice (orange). The rates are expressed as injuries per 1,000 athlete-exposures for all sports analyzed in the ISS for the 2004-05, 2005-06 and 2006-07 seasons.

*Two-season average.

<table>
<thead>
<tr>
<th>Sport</th>
<th>Injuries with 7+ Days Time Loss Competition (IR)</th>
<th>Injuries with 7+ Days Time Loss Practice (IR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrestling</td>
<td>3.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Women's Gymnastics*</td>
<td>5.2</td>
<td>12.5</td>
</tr>
<tr>
<td>Men’s Soccer</td>
<td>2.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Women’s Soccer</td>
<td>2.5</td>
<td>7.8</td>
</tr>
<tr>
<td>Men’s Lacrosse</td>
<td>2.0</td>
<td>6.6</td>
</tr>
<tr>
<td>Men’s Ice Hockey</td>
<td>1.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Women’s Basketball</td>
<td>1.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Women’s Lacrosse</td>
<td>1.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Men’s Basketball</td>
<td>1.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Baseball*</td>
<td>1.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Women’s Ice Hockey</td>
<td>0.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Field Hockey</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Softball*</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Women’s Volleyball</td>
<td>1.9</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Figure 5

Competition and Practice 7+ Days Time Loss Injury Rates Summary (All Sports)
Figure 6
Competition and Practice Injuries Requiring Surgery Rate Summary (All Sports)

Figure 6 represents the average rate of reported injuries that required surgery, suffered either in competition (black) or in practice (orange). The rates are expressed as injuries per 1,000 athlete-exposures for all sports analyzed in the ISS for the 2004-05, 2005-06 and 2006-07 seasons.

*Two-season average.
For more information about the NCAA Injury Surveillance System, visit our Web site at: NCAA.org/iss

The Web site contains:

General Information
- ISS Methods, Definitions and Information
- ISS Updates
- HIPAA Updates
- NCAA Sponsorship and Participation Report

Data Collection
- Institution Participation Form
- Injury and Exposure forms
- Directions/Other Information
- Web Based Enhancement
- Participation and Student-athlete Consent Form

NCAA ISS Data
- Game comparison Across 16 Sports
- Practice comparison Across 16 Sports
- Sport Specific Injury Data
- ISS Articles from The NCAA News

Catastrophic Injury
- National Center for Catastropic Sport Injury Research Web site

Contact Us

NCAA Injury Surveillance System
P.O. Box 6222
Indianapolis, Indiana 46206-6222
Phone: 317/917-6960
Fax: 317/917-6364
From 1974 to 2007, the following individuals have served on the NCAA Committee on Competitive Safeguards and Medical Aspects of Sports and contributed to the information in the NCAA Sports Medicine Handbook:

John R. Adams
Western Athletic Conference
Ken Akizuki
University of San Francisco
James R. Andrews, M.D.
Troy University
Elizabeth Arendt, M.D.
University of Minnesota, Twin Cities
William F. Arnet
University of Missouri, Columbia
James A. Arnold
University of Arkansas, Fayetteville
Janet Kay Bailey
Glenville State College
Dewayne Barnes
Whittier College
Amy Barr
Eastern Illinois University
Fred L. Behling
Stanford University
Daphne Benas
Yale University
John S. Biddiscombe
Wesleyan University (Connecticut)
Carl S. Blyth
University of North Carolina, Chapel Hill
Cindy D. Brauck
Missouri Western State College
Donald Bunce, M.D.
Stanford University
Elsworth R. Buskirk
Pennsylvania State University
Peter D. Carlon
University of Texas, Arlington
Gene A. Carpenter
Millersville University of Pennsylvania
Marino H. Casem
Southern University, Baton Rouge
Nicholas J. Cassissi, M.D.
University of Florida
Rita Castagna
Assumption College
Charles Cavagnaro
University of Memphis
Kathy D. Clark
University of Idaho
Kenneth S. Clarke
Pennsylvania State University
Priscilla M. Clarkson
University of Massachusetts, Amherst
Bob Colgate
National Federation of State High School Associations
Donald Cooper, M.D.
Oklahoma State University
Kip Corrington
Texas A&M University, College Station
Lauren Costello, M.D.
Princeton University
Ron Courson
University of Georgia
Carmen Cozza
Yale University
Bernie DePalma
Cornell University
Jerry L. Diehl
National Federation of State High School Associations
Larry Fitzgerald
Southern Connecticut State University
Paul W. Gikas, M.D.
University of Michigan
Pamela Gill-Fisher
University of California, Davis
Gordon L. Graham
Minnesota State University Mankato
Gary A. Green, M.D.
University of California, Los Angeles
Letha Griffin, M.D.
Georgia State University
Eric Hamilton
The College of New Jersey
Kim Harmon
University of Washington
Richard J. Hazelton
Trinity College (Connecticut)
Larry Holstad
Winonna State University
Maria J. Hutsick
Boston University
Nell C. Jackson
State University of New York at Binghamton
John K. Johnston
Princeton University
Don Kaverman
Southeast Missouri State University
Janet R. Kittell
California State University, Chico
Fran Koenig
Central Michigan University
Olav B. Kollevoll
Lafayette College
Jerry Koloskie
University of Nevada, Las Vegas
Roy F. Kramer
Vanderbilt University
Michael Krauss, M.D.
Acknowledgements

Purdue University
Carl F. Krein
Central Connecticut State University
Russell M. Lane, M.D.
Amherst College
John Lombardo, M.D.
Ohio State University
Scott Lynch
Pennsylvania State University
William B. Manlove Jr.
Delaware Valley College
Arnold Mazur, M.D.
Boston College
Chris McGrew, M.D.
University of New Mexico
William D. McHenry
Washington and Lee University
Malcolm C. McInnis Jr.
University of Tennessee, Knoxville
Douglas B. McKeag, M.D.
Michigan State University
Kathleen M. McNally
La Salle University
Robin Meiggs
Humboldt State University
Dale P. Mildenberger
Utah State University
Melinda L. Millard-Stafford
Georgia Institute of Technology
Fred L. Miller
Arizona State University
Matthew Mitten
Marquette University
Frederick O. Mueller
University of North Carolina, Chapel Hill
David M. Nelson
University of Delaware
William E. Newell
Purdue University
Jeffrey O'Connell
University of Virginia
Roderick Paige
Texas Southern University
Joseph V. Paterno
Pennsylvania State University
Marc Paul
University of Nevada, Reno
Daniel Pepicelli
St. John Fisher College
Frank Pettrone, M.D.
George Mason University
Marcus L. Plant
University of Michigan
Nicole Porter
Shippensburg University of Pennsylvania
James C. Puffer, M.D.
University of California, Los Angeles
Margot Putukian
Princeton University
Ann Quinn-Zobek
University of Northern Colorado
Tracy Ray
Samford University
Joy L. Reighn
Rowan University
Frank J. Remington
University of Wisconsin, Madison
Rochel Rittgers
Augustana College (Illinois)
Darryl D. Rogers
Southern Connecticut State University
Yvette Rooks
University of Maryland, College Park
Debra Runkle
University of Dubuque
Richard D. Schindler
National Federation of State High School Associations
Kathy Schniedwind
Illinois State University
Brian J. Sharkey
University of Montana
Willie G. Shaw
North Carolina Central University
Jen Palancia Shipp
University of North Carolina, Greensboro
Gary Skrinar
Boston University
Bryan W. Smith, M.D.
University of North Carolina, Chapel Hill
Michael Storey
Bridgewater State College
Grant Teaff
Baylor University
Carol C. Teitz, M.D.
University of Washington
Patricia Thomas
Georgetown University
Susan S. True
National Federation of State High School Associations
Laurie Turner
University of California, San Diego
Jerry Weber
University of Nebraska, Lincoln
Christine Wells
Arizona State University
Kevin M. White
Tulane University
Robert C. White
Wayne State University (Michigan)
Sue Williams
University of California, Davis
Charlie Wilson
 Olivet College
G. Dennis Wilson
Auburn University
Mary Wisniewski
University of Chicago
Glenn Wong
University of Massachusetts, Amherst
Joseph P. Zabilski
Northeastern University
Connee Zotos
Drew University
APPENDIX D
Banned Drug Classes

The following is a list of banned-drug classes, with examples of substances under each class:

Stimulants:

- amiphenazole
- amphetamine
- bemigride
- benzphetamine
- bromantan
- caffeine\(^1\) (guarana)
- chlorphentermine
- cocaine
- cropropamide
- crothetamide
- diethylpropion
- dimethylamphetamine
- doxapram
- ephedrine (ephedra, ma huang)
- ethamivan
- ethylamphetamine
- fencamfamine
- meclofenoxate
- methamphetamine
- methylenedioxymethamphetamine (MDMA, ecstasy)
- methylphenidate
- nikethamide
- octopamine
- pemoline
- pentetrazol
- phendimetrazine
- phenmetrazine
- phentermine
- phenylpropanolamine (ppa)
- picrotoxine
- pipradol
- prolintane
- strychnine
- synephrine (citrus aurantium, zhi shi, bitter orange)

The following stimulants are not banned:

- phenylephrine
- pseudoephedrine

Anabolic Agents:

Anabolic steroids

- androstenediol
- androstenedione
- boldenone
- clomestanol
- dehydrochlormethyltestosterone
- dehydroepiandrosterone (DHEA)
- dihydrotestosterone (DHT)
- dromostanolone
- epitrenbolone
- fluoxymesterone
- gestrinone
- mesterolone
- methandienone
- methyltestosterone
- nandrolone
- norandrostenediol
- norandrostenedione
- norethandrolone
- oxandrolone
- oxymesterone
- oxymetholone
- stanozolol
- testosterone\(^2\)
- tetrahydrogestrinone (THG)
- trenbolone

Other Anabolic Agents

- clenbuterol

Substances Banned for Specific Sports:

Rifle:

- alcohol
- atenolol
- metoprolol
- nadolol
- pindolol
- propranolol
- timolol

and related compounds
Banned Drug Classes

Diuretics and other Urine Manipulators:

- acetazolamide
- bendroflumethiazide
- benzthiazide
- bumetanide
- chlorothiazide
- chlorthalidone
- ethacrynic acid
- finasteride
- flumethiazide
- furosemide
- hydrochlorothiazide
- hydroflumethiazide
- methyclothiazide
- metolazon
- polythiazide
- probenecid
- spironolactone (canrenone)
- spironolactone
- triamterene
- trichlormethiazide
- and related compounds

Street Drugs:

<table>
<thead>
<tr>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>heroin</td>
</tr>
<tr>
<td>marijuana³</td>
</tr>
<tr>
<td>THC (tetrahydrocannabinol)³</td>
</tr>
</tbody>
</table>

Peptide Hormones and Analogues

- corticotrophin (ACTH)
- growth hormone (hGH, somatotrophin)
- human chorionic gonadotrophin (hCG)
- insulin-like growth hormone (IGF-1)
- luteinizing hormone (LH)

(All the respective releasing factors of the above-mentioned substances also are banned.)

- erythropoietin (EPO)
- darbepoetin
- sermorelin

Anti-Estrogens:

- anastrozole
- tamoxifen
- clomiphene
- and related compounds

Definitions of positive depends on the following:

1. **for caffeine**—if the concentration in urine exceeds 15 micrograms/ml.
2. **for testosterone**—an adverse analytical finding (positive result) based on any reliable analytical method (e.g., IRMS, GCMS, CIR) which shows that the testosterone is of exogenous origin, or if the ratio of the total concentration of testosterone to that of epitestosterone in the urine is greater than 6:1, unless there is evidence that this ratio is due to a physiological or pathological condition.
3. **for marijuana and THC**—if the concentration in the urine of THC metabolite exceeds 15 nanograms/ml.
NCAA Bylaw 31.2.3.4.1 Drugs and Procedures Subject to Restrictions.

The use of the following drugs and/or procedures is subject to certain restrictions and may or may not be permissible, depending on limitations expressed in these guidelines and/or quantities of these substances used:

(Revised: 8/15/89)

(a) Blood Doping. The practice of blood doping (the intravenous injection of whole blood, packed red blood cells or blood substitutes) is prohibited, and any evidence confirming use will be cause for action consistent with that taken for a positive drug test. (Revised: 8/15/89, 5/4/92)

(b) Local Anesthetics. The Executive Committee will permit the limited use of local anesthetics under the following conditions:

(1) That procaine, xylocaine, carbocaine or any other local anesthetic may be used, but not cocaine; (Revised: 12/9/91, 5/6/93)

(2) That only local or topical injections can be used (i.e., intravenous injections are not permitted); and

(3) That use is medically justified only when permitting the athlete to continue the competition without potential risk to his or her health.

(c) Manipulation of Urine Samples. The Executive Committee bans the use of substances and methods that alter the integrity and/or validity of urine samples provided during NCAA drug testing. Examples of banned methods are catheterization, urine substitution and/or tampering or modification of renal excretion by the use of diuretics, probenecid, bromantan or related compounds, and epitestosterone administration. (Revised: 8/15/89, 6/17/92, 7/22/97)

(d) Beta 2 Agonists. The use of beta 2 agonists is permitted by inhalation only. (Adopted: 8/13/93)

(e) Additional Analysis. Drug screening for select nonbanned substances may be conducted for nonpunitive purposes. (Revised: 8/15/89)
Know the Differences!

If you’re a collegiate student-athlete subject to drug testing, do you know that sports organizations have different rules about banned/prohibited drugs? Do you know the differences?

<table>
<thead>
<tr>
<th>Drug Class (example)</th>
<th>NCAA¹</th>
<th>USADA²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>Banned in competition for rifle</td>
<td>Prohibited only in competition for archery and other non-NCAA sports</td>
</tr>
<tr>
<td>Anabolic Steroids/Agents</td>
<td>Banned</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>Banned for rifle</td>
<td>Prohibited only in competition for gymnastics, bowling, specified skiing disciplines, wrestling and other non-NCAA sports. Prohibited both in competition and out of competition for archery and shooting</td>
</tr>
<tr>
<td>Beta-2 Agonists (e.g., asthma medi)</td>
<td>Banned or Restricted</td>
<td>Prohibited in and out of competition. Specified Beta-2 Agonists require an Abbreviated TUE¹; all others require the Standard TUE¹</td>
</tr>
<tr>
<td>Dietary Supplements</td>
<td>WARNING¹</td>
<td>WARNING¹</td>
</tr>
<tr>
<td>Diuretics</td>
<td>Prohibited</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Glucocorticosteroids (e.g., prednisone)</td>
<td>Not banned</td>
<td>Prohibited in competition. Local use requires an Abbreviated TUE¹; Standard TUE¹ required for systemic use. Topical use permitted.</td>
</tr>
<tr>
<td>Hormones and related substances (e.g., growth hormone, EPO)</td>
<td>Banned</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Local Anesthetics</td>
<td>Restricted</td>
<td>Allowed</td>
</tr>
<tr>
<td>Marijuana</td>
<td>Banned</td>
<td>Prohibited; tested for in competition</td>
</tr>
<tr>
<td>Masking Agents</td>
<td>Banned</td>
<td>Prohibited</td>
</tr>
<tr>
<td>Narcotics (except heroin)</td>
<td>Not banned</td>
<td>Specific drugs prohibited in competition. Others allowed.</td>
</tr>
<tr>
<td>Prohibited Methods</td>
<td>Banned, e.g., blood doping, chemical and physical manipulation.</td>
<td>Prohibited; Gene doping, i.e., transport (e.g., blood doping, RSR13), chemical and physical manipulation, etc.</td>
</tr>
<tr>
<td>Stimulants</td>
<td>Banned (except pseudoephedrine andephedrine)</td>
<td>Prohibited in competition (except caffeine, pseudoephedrine &ephedrine-See USADA for others)</td>
</tr>
</tbody>
</table>

BANNED or PROHIBITED: Drug class may not be used as shown (USADA requires approved TUE).
RESTRICTED: Drug class may be used under special circumstances defined by the organization.
NOT BANNED or ALLOWED: Category may be used, assuming the use is legal, appropriate or medically justified.

1. NCAA Bylaw 3.2.2.3.
3. Abbreviated Therapeutic Use Exemption (TUE) and Standard TUE – a complete and legible form must be submitted to USADA by the athlete prior to using the medication. Some sports require specific medical records and test results. For more information contact USADA as indicated below.
4. DIETARY SUPPLEMENT WARNING - Some products sold as dietary supplements contain banned substances. No one can assure you that a supplement is 100% pure. USADA states that the use of supplements is at the “Athletes Own Risk.”

This information is for educational purposes only. This is not a complete listing. Contact the following organizations if you have any questions about specific drugs or supplement products. Information about dietary supplements is NOT available in USADA’s Drug Reference Line™ and Drug Reference Online™ resources.

For a complete list of NCAA Banned Drug Classes, go to...

www.NCAA.org/health-safety

NCAA athletes contact:

www.drugfreesport.com/rec

Olympic-sport athletes contact:

800.233.0393 or www.usantidoping.org/dro

Drug Free Sport

This document is available free of charge from The National Center for Drug Free Sport, the official administrator of NCAA Drug Testing, at www.drugfreesport.com. Duplication is encouraged. Information is subject to change but is current as of June 1, 2007.
The NCAA salutes the more than 380,000 student-athletes participating in 23 sports at more than 1,000 member institutions.