
Citations Journal of Undergraduate Research
2021, Volume 18

Traveling Salesman in LaGrange, Georgia
Holston Sebaugh
Faculty Mentor: Stacey L. Ernstberger, PhD
Mathematics

Abstract

In the field of graph theory in mathematics, the Travel-
ing Salesman Problem determines an optimized closed loop
through multiple locations. We apply this problem to vari-
ous destinations throughout LaGrange, Georgia to solve for
minimum time and distance paths. This problem has many
applications where one needs to determine optimal routes for

visiting every location in a predetermined list. Here, present
and demonstrate the Traveling Salesman Problem and then we
apply this problem to the scenario of visiting the popular lo-
cations in LaGrange, Georgia while minimizing distance and
time.

When given multiple locations, what is the the most effi-
cient way to visit each of them? This a common scenario, known
as a Traveling Salesman Problem (TSP) and can be applied in
many situations. For example, when considering LaGrange Col-
lege, many prospective students may like to see what the city has
to offer before making a final decision. We consider the scenic
areas in LaGrange, Georgia and construct a Traveling Salesman
Problem around visiting those locations with a prospective stu-
dent. Before we apply this problem to our given scenario, let’s
first demonstrate a basic example, and then discuss how we have
chosen to implement this process using Matlab.

Preliminary Example

We created an example using four nodes with various
weights representing the cost to get between nodes. In Figure
(1), the arrows represent the weight of the paths to travel be-
tween nodes. We transform this diagram into a matrix whose
elements represent the distance between the nodes. Here, the
(i, j) element represents the weight of the path from node i to
node j.

A =

0 2 1 3
5 0 2 1
2 2 0 4
1 1 3 0

Notice that along the main diagonal of A, all the values are zero.
Since each element represents the distance from one index to
another, it makes sense that the distance from each node to itself
would be zero. Note that not all weights are the same between
nodes.

1 2

3 4

5

2

4

3

1

2

1
3

1

2

Figure 1: Weighted Diagram of Travel

To find the optimal path with weight P∗, through each
node, we begin by looking at all possible paths of our matrix.
We use the notation P(1,{2,3,4}) to represent the weight of the
path starting at node one and considering all of the path options
that include nodes two, three, and four. We then proceed to break
down the paths into their subsequent steps. Here,

P∗(1,{2,3,4}) = min(P(1,{2,3,4}))
= min(P((1,2)+P(2,{3,4})),

P((1,3)+P(3,{2,4})),
P((1,4)+P(4,{2,3})))

where the notation (1,2) represents the weight of the path from

137

Citations Journal of Undergraduate Research
Traveling Salesman in LaGrange, Georgia

138

node 1 to node 2. Then,

P((1,2)+P(2,{3,4})) = 2+min(P(2,{3,4})) (1)

P((1,3)+P(3,{2,4})) = 1+min(P(3,{2,4})) (2)

P((1,4)+P(4,{2,3})) = 3+min(P(4,{2,3})). (3)

The second terms in (1), (2), and (3) are the minimum weights
of the paths that from the second to the third node. Without loss
of generality, we will only consider (1) and take the next step.
However, the process is the same for (2) and (3).

P((2,3)+P(3,{4})) = 2+min(P(3,{4})) (4)

P((2,4)+P(4,{3})) = 1+min(P(4,{3})) (5)

Here we seperately consider each remaining node as the nest
step. We continue this process until the final step. We will now
include the distance it takes from the fourth and final node back
to node one, and display it as the value in parenthesis. For (4)
and (5) this becomes

P(3,{4}) = P((3,4)+(4,1)) = 4+(1) = 5

P(4,{3}) = P((4,3)+(3,1)) = 3+(2) = 5.

Since we are solving for the minimum weight, we must first
solve for the minima of (4) and (5) as follows:

P((2,3)+P(3,{4})) = 2+5 = 7

P((2,4)+P(4,{3})) = 1+5 = 6.

We repeat this process for (2) and (3) to obtain:

P((3,2)+P(2,{4})) = 2+2 = 4
P((3,4)+P(4,{2})) = 3+6 = 9

and

P((4,2)+P(2,{3})) = 1+4 = 5
P((4,3)+P(3,{2})) = 3+7 = 10.

The bold face values represent the minimum weight path of the
two options from each second node. We evaluate (1), (2), and
(3) to find

P((1,2)+P(2,{3,4})) = 2+6 = 8

P((1,3)+P(3,{2,4})) = 1+4 = 5
P((1,4)+P(4,{2,3})) = 3+5 = 8.

Now we can assemble our path of minimum weight as follows:

P∗(1,{2,3,4}) = P((1,3)+P(3,{2,4}))
= P((1,3)+(3,2)+P(2,{4}))
= P((1,3)+(3,2)+(2,4)+(4,1))

and hence
P∗(1,{2,3,4}) = 5.

Thus the optimal path through the numbered nodes in Figure 1
is given by

1→ 3→ 2→ 4→ 1. (6)

If we were to begin the path at a different node, our optimal path
would appear in the same order as in (6). For example, if we
again considered the system depicted in Figure 1 and chose node
2 as our initial location, our optimal path would then become

2→ 4→ 1→ 3→ 2.

Now that we have a basic understanding of how to solve
the traveling salesman problem, we can address other methods
and practices used in addressing this problem.

Methods of Implementing Traveling Salesman

While our described process was just one way of solving
the Traveling Salesman Problem, this method will become an
issue when the number of nodes increases beyond just a few.
The resulting number of permutations that must be considered
when looking at every optimal path requires a large amount of
runtime. As this is a common problem in graph theory, many
methods exist to solve this problem in a different way:

• the Miller, Tucker, and Zemlin method (MTZ)

• the Dantzig, Fulkerson, and Johnson method (DFJ)

• Ant Colony System (ACS)

• Genetic Algorithm (GA).

The last two methods, ACS and GA, originate from biology and
embrace machine learning through “families” of iteration. The
DFJ is a robust method that handles calculating very quickly, and
the MTZ ultimately acts as a good starting guide for the TSP [1].
However, these methods tend to involve subroutines where the
overall optimal path may not be connected.

Implementing the Method using MATLAB

In our method, which is the direct method involving per-
mutations, we began by loading a square matrix of dimension
n× n consisting of weights to travel between nodes. For each
path through all the nodes, there is a cost to travel, and this cost
is determined by adding the appropriate weights in the matrix.

For a matrix of size n×n, we have n nodes and we first
list the permutations of those nodes, excluding our starting and

Citations Journal of Undergraduate Research
Traveling Salesman in LaGrange, Georgia

139

finishing node. We then assemble a full array of all possible
paths (n− 1) into an (n− 1)!× (n− 1) matrix and reinsert our
starting and finishing node, thus creating a (n−1)!×(n+1) ma-
trix. Then, to calculate the total cost of each path, we implement
the following chunk of code:

for j = 1:(n-1)!
for i = 1:(n-1)

cost(i,j) = A(path(i,j),path(i+1,j));
end
cost(n+1,j) = A(path(n,j),path(n+1,j));
total_cost(j) = sum(cost(:,j));

end

In this code, the A matrix is our initial weight matrix,
cost contains the distance weight between nodes within each
path, and path is a matrix of our possible paths. Once we run
this within MATLAB, we can then calculate a simple min opera-
tion of our variable total cost which contains the total weight
of each path and find our shortest distance along with its corre-
sponding path. Executing it this way has one drawback of taking
O(n!) operations which can slow down runtime for larger values
of n.

To speed up this process and reduce the number of oper-
ations, we implement a path comparison conditional. To begin a
comparison conditional, we create a variable called best dist
and prepare a placeholder for our value of shortest path. We let
this initial placeholder be the total sum of all the elements within
our cost matrix, which quickly gets replaced as soon as we start
iterating through our possible paths. Once we have calculated
the total cost of the first path, we compare it to best dist. If
it is less, we replace the value of best dist with the new value
and save the index of the path being used. From here, we repeat
the process. As we compute total cost(j), we compare it to
our best path:

• If total cost(j) is larger than best path, it is ignored.

• If total cost(j) is equal to best path then the indices
j is stored.

• If total cost(j) is less than best dist, the value of
best dist would be replaced and the previous index
stored in best path would be removed and replaced by
the current index.

We then repeat this process through all iterations to gain our final
minimum distance and path(s).

Application

We now apply this method to our initial LaGrange Col-
lege prospective students scenario. Recall that our goal is to
show a prospective LaGrange College student the highlights of
the town, beginning and ending at LaGrange College. The fol-
lowing locations were chosen based on their historical and cul-
tural significance to the city, with consideration given to the in-
tended age group:

• LaGrange College

• Callaway Stadium

• LaGrange Mall

• Great Wolf Lodge

• Pyne Road Park

• Granger Park

• Charlie Joseph’s

• Lafayette Fountain

• Callaway Clocktower

• Wild Leap Brewing

• LaGrange Art Museum

• Sweetland Amphitheater

We collect data consisting of the distance and time be-
tween each of these locations prior to implementing the code for
the Traveling Salesman Problem in MATLAB.

Figure 2: Cost Matrix for Distance in Miles

Citations Journal of Undergraduate Research
Traveling Salesman in LaGrange, Georgia

140

Optimal Distance Path

We obtain the minimal distance between each location
using Google Maps [2] as seen in Figure (2). The starting loca-
tion is listed along the left hand side of the table and the ending
location is listed along the top of the table.

We allow LaGrange College to represent the beginning
and end nodes of our path, and we then derive the optimal
path through all locations excluding Great Wolf Lodge and Pyne
Road Park. We choose to omit these to reduce the wait due to the
processing time needed for each additional location. For exam-
ple, as we can see in the Table 1, the processing time can grow
exponentially with the addition of more locations, hence we per-
form our computations using a reduced number of locations for
our scenario.

of Locations Time Taken to Calculate
6 0.395s
7 0.3725s
8 0.476s
9 3.45s
10 563.84s

Table 1: Time taken to Process Locations

By implementing our code using the cost matrix in Fig-
ure 3 with the aforementioned modifications, we obtain an op-
timized route which begins and ends at LaGrange College. The
route is given as follows:

LaGrange College→ Callaway Stadium

→ Clocktower→Wild Leap→ Charlie Joseph’s

→ Fountain→ Art Museum→Mall→ Sweetland

→ Granger Park→ LaGrange College.

The distance for the optimal path is 11.97 miles. In Figure (4)
we see a map overlay of our optimal distance path in LaGrange
for our given locations.

Figure 4: Distance Path Map Overlay [2]

Although the path of optimal distance seems like it
would be a good choice for a prospective student, when driving
we typically choose the path of minimum time without regard to
the distance. In order to determine whether these routes are the
same, we need to obtain timed data in addition to our distance
data.

Optimal Time Path

We follow the same process to find our optimal (min-
imum) timed route, beginning by collecting the timed data in
minutes using Google Maps [2]. We see the results of the data
collection in Figure (3). We should note that traffic was not taken
into consideration with our timed paths, i.e., if we had obtained
the data at 5:00 PM we likely would have had longer time es-
timates corresponding to higher levels of traffic. The data was

Figure 3: Cost Matrix for Time in Minutes

Citations Journal of Undergraduate Research
Traveling Salesman in LaGrange, Georgia

141

collected at a time when we anticipated very few cars on the
road.

After running the timed data through our Traveling
Salesman code, we obtained two optimal routes. One route is
exactly the same path as our optimal distance path. However,
we have an alternate route of optimal time as follows:

LaGrange College→ Callaway Stadium

→ Clocktower→Wild Leap→ Charlie Joseph’s

→ Fountain→ Sweetland→ Art Museum→Mall

→ Granger Park→ LaGrange College

Both routes require the minimum time of thirty-three minutes
to traverse through each location, beginning and ending at La-
Grange College. It should be noted that when we implement a
different number of nodes or a different assortment of locations,
we occasionally obtain multiple paths as has occurred in this
case. This is a common result in Traveling Salesman Problems.
Depending on the application, often only one of the optimal so-
lutions is provided.

In Figure (5), we see a map overlay of our optimal dis-
tance path in LaGrange for our given locations. In our appli-

Figure 5: Time Path Map Overlay [2]

cation, the optimal time path would be the path that we would
recommend for a prospective LaGrange College student to take
in order to have a better idea of some of the highlights of the
town.

Conclusions

The Traveling Salesman Problem has many real world
applications and many methods for implementation to best han-

dle each of those applications. It seems straightforward to im-
plement in theory, but in practice is rigorous in formulation, and
there are various drawbacks to each method. The direct method
that we implemented is thorough but lacks in speed, and is ren-
dered unusable with large numbers of nodes. With more devel-
opment, our goal would be to reach more locations and have a
faster processing time by implementing one of the methods that
does not require a thorough search through the permutations of
each node. We would like to reduce computational time while
increasing the amount of nodes handled per path, and this would
likely involve the incorporation of machine learning to achieve
this goal.

References

[1] Baobab. “Three Different Methods to Solve the Traveling
Salesman Problem.” 02 Oct. 2020.

[2] Google Maps. LaGrange, Georgia. https://goo.gl/maps.
Web. 9 April 2021.

[3] Mishra, Neeraj. “Travelling Salesman Problem in C and
C++.” The Crazy Programmer. 25 May 2017.

[4] Singh, Nishant. “Traveling Salesman Problem (TSP) Imple-
mentation.” GeeksforGeeks. 04 Nov. 2020.

